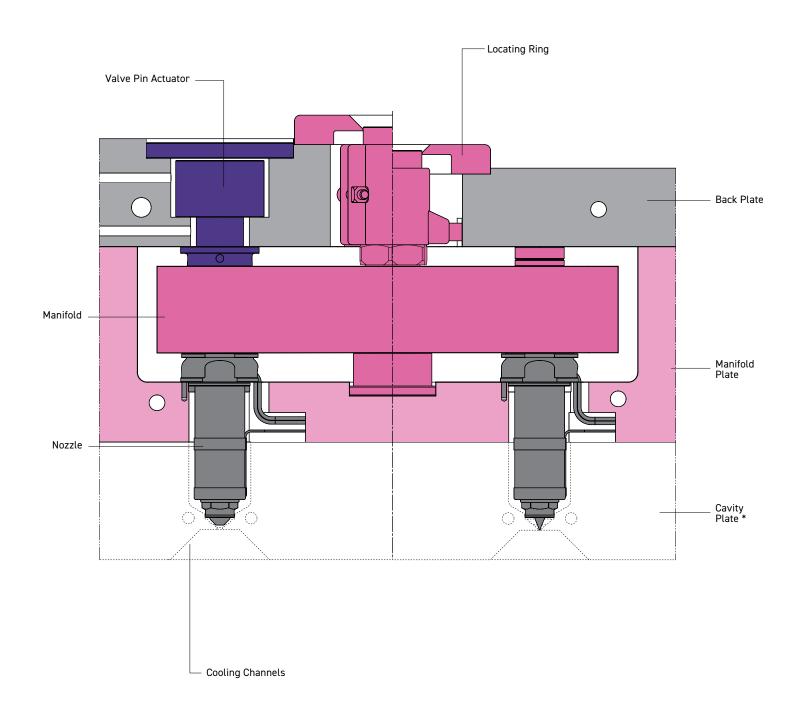

System Selection Guide

Your Complete Hot Runner Configuration Guide


System Selection Guide

Contents	pg
Standard Hot Runner Configuration	4
Hot Runner System Overview	5
Selection Overview	6
Nozzle Range and Series Options	8
Nozzle Range Selection	10
Nozzle Series Selection	11
Typical Flow Length Ratios	12
Nozzle Flow Rates	12
Tip Grade Selection	13
Tip Style Selection	14
Tip Styles	15
Nut Grade Selection	16
Nut Type Selection	17
Nut Options	18
Nozzle Assembly Order Code for MJ and X-Range Series	19
Tip and Nut Options	20
Plastic Material and Tip and Nut Suitability	21
Gate Geometry Selection	22
Gating Options - MX / BX / SX / FlowLoc™	24
Gating Options - YCN/Multi-Gates	25
YCN Nut	26
Multi-Gates	28
MX Nozzle	30
BX Nozzle	32
SX Nozzle	34
FlowLoc™ Range	36
MJ Nozzle	38
Gating Options - MJ	39
VeriShot [™] Single Valve Gate System	40
MVG25 Headed Pin Valve Gate System	42
MVG40 Headed Pin Valve Gate System	44
MVG40 Threaded Pin Valve Gate System	46
MVG55 Headed Pin Valve Gate System	48
MVCH Valve Gate System	50
Manifold Components	52
Selecting a Manifold Configuration	53
Nexus [™] Systems	54
Hot Half System	55
Additional Considerations	56
System Selection Example	58
Meticom TC5100 / TC5200 Temperature Control System	59
Meticom TC5H Temperature Control System	60
G-Series GTV8 Integrated Sequential Controller	61

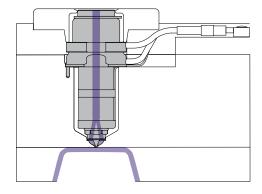
Standard Hot Runner Configuration

*Supplied by Customer

Hot Runner System Overview

A Hot Runner System maintains a molten flow of plastic from the moulding machine nozzle to the gate of a plastic injection mould.

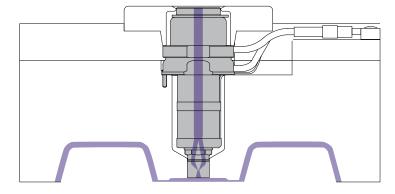
Mastip Hot Runner System Benefits


- · Efficient cycle times
- · Improves part consistency and quality
- · Minimised gate vestige
- · Reduced injection pressure
- Valve gates allow for sequential filling and allow family part moulds
- · Eliminates the cold runner that would be scrap or require re-grind
- · Increased process control for fine tuning of mould and part

Hot Runner System Critical Areas of Performance

Manifold design considerations:

- · Precise temperature control of the molten plastic
- · Balanced flow to all cavities for even part filling
- · Nozzle sizing for maintaining sufficient molten material flow
- · Gate detail required to correctly fill the part and shut the gate
- · No material traps or areas of flow hesitation to ensure quick colour change and prevent material degradation
- Minimum pressure drop across the Hot Runner System
- · Reasonable melt residence time
- · Maximum cooling of gate areas to ensure effective shut off to gates


Fully Hot Versus Semi Hot Configuration

Single Nozzle Gating Directly onto Part

Fully Hot advantages:

- No material wastage
- · Low cycle times
- Low part stress

Single Nozzle Gating into a Cold Runner

Semi Hot advantages:

- · Reduces cold runner weight
- · Reduces cost of mould
- Suitable for difficult gate locations

Selection Overview

The easiest way to select the correct hot runner system is to follow the nine steps below.

ONE

Fill in part and material details for later reference

Part Specification	Value	Unit
Part Description		
Part Weight		g
Cold runner weight (if applicable)		g
Overall size of part L x W x H		mm
Nominal Wall Thickness		mm
Minimum Wall Thickness		mm

Gate Requirements	value
Cosmetic?	Y/N
Flat or recessed gate for label / printing?	Y/N
Mould Specifications	Value
Number of Cavities?	
Hot Half Construction?	Y / N

Material Specifications	Value
Material Type	
Filler or Glass Fibre %	
Manufacturer and grade OR MFI - Value, Temperature & load	

TWO

Using the flow chart "Nozzle Range Selection" on page 10 select the required Nozzle Range.

Nozzle Range	MX / BX / SX / TX / MJ
NUZZIE Kange	

SIX

Using the flow chart "Nut Grade Selection" on page 16 and the associated table select the appropriate nut grade.

Nut Grade	H1 / H5
	,

THREE

Using the flow chart "Nozzle Series Selection" on page 11 and the associated tables on page 12 select the appropriate nozzle series.

Nozzle Series	09 / 13 / 16 / 19 / 27

SEVEN

Using the flow chart "Nut Type Selection" on page 17 and the associated tables on page 18 select the appropriate nut style.

Thermal Gate		
Nut Style ONT/BN/BE/SN/SX/SL/RN/RSN/YCN		
Valve Gate		
Nut Style	ONT/VBE/VSN	

FOUR

Using the flow chart "Tip Grade Selection" on page 13 and the associated table select the appropriate tip grade.

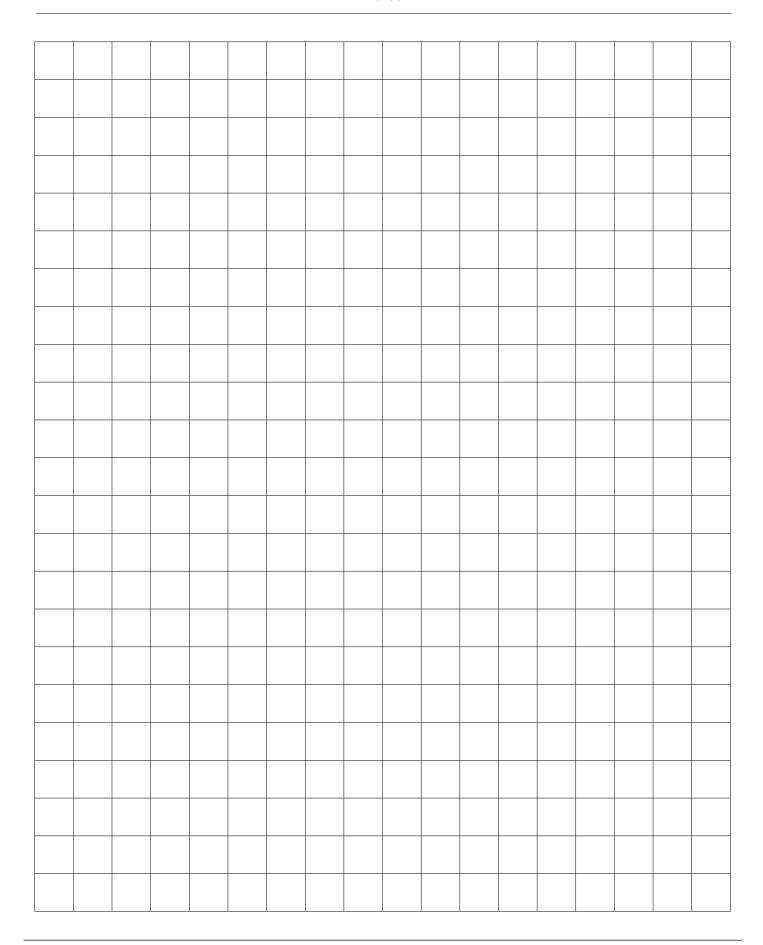
EIGHT

Using the flow chart "Gate Geometry Selection" on page 22 select the appropriate gate geometry.

,		units
Gate Diameter (mm)		mm
Gate Land (0.2mm max)		mm

FIVE

Using the flow chart "Tip Style Selection" on page 14 and the associated table on page 15 select the appropriate tip style. For "Multi-Gate Selection" refer to page 28.


Thermal Gate		
Tip Style	TT / IT / OT	
Tip Extension (if applicable)	+5 / +10	
Multi-Gate		
Tip Style	2A/3A/4A/1S/2S/3S/4S	
Valve Gate		
Tip Style	TV / 0V	

MIME

Based on the number of cavities and/or the injection points required per part specify your manifold by attaching a drawing showing the required positions or using the L & R references as per the manifold section of the Technical Guide.

Number of nozzles on manifold	
	1

Notes

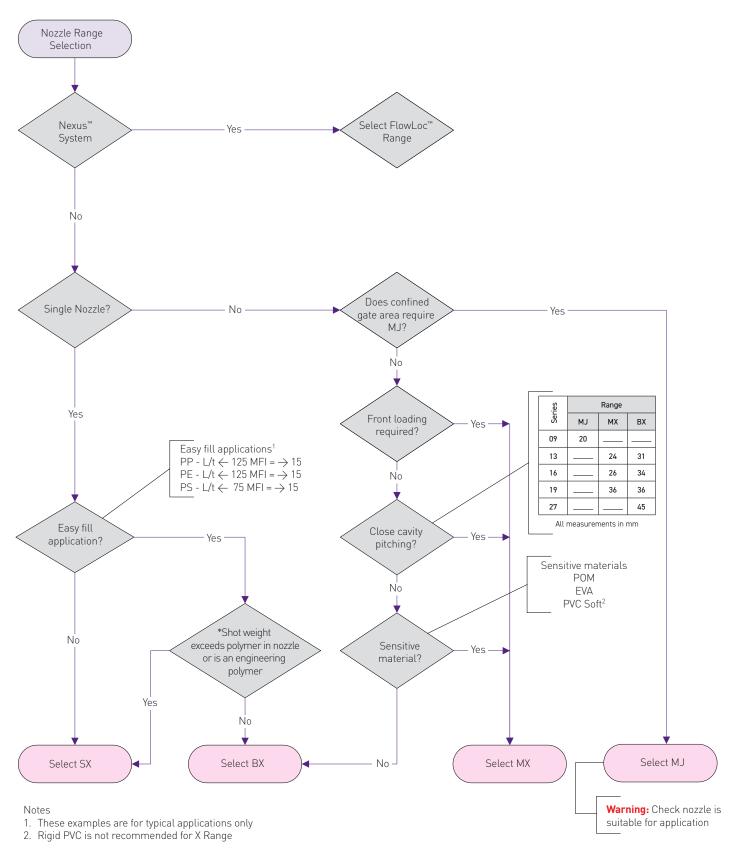
Nozzle Range & Series Options

System Selection Guide

Not available / Not suitable

Nozzle Range and Series Options		Suitability	
	✓	Available / Suitable	r
	0	Application dependant]

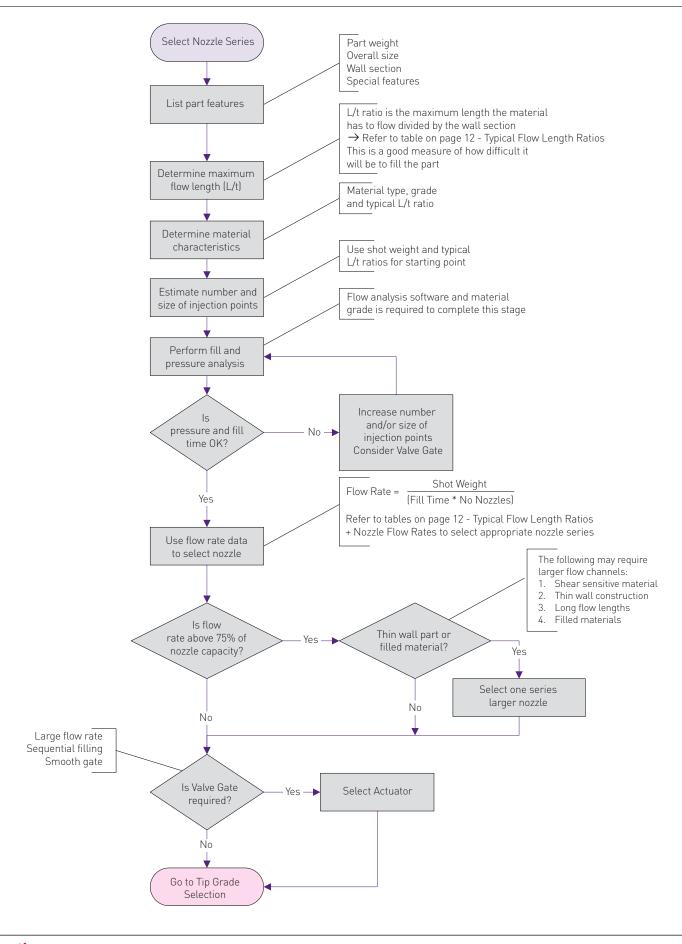
Nozzle	Range		09		zle Se		27	Valve Gate	Front Loading	Single Nozzle
LM		Front loading heater for Hot Half use Confined gate area Close cavity pitching	√ V	13 ×	16 ×	19 ×	×	×	*	×
MX		Front loading heater for Hot Half use Close cavity pitching	×	~	~	~	×	1	√	×
BX		Cost effective solution Special length nozzles available Robust heater design Limited single nozzle use	×	✓	✓	✓	1	✓	×	©
SX		Dedicated single nozzle solution Two heaters for optimum control	×	✓	✓	✓	✓	×	×	V


Nozzle Range and Series Options Key Suitability ✓ Available / Suitable O Application dependant

×

Not available / Not suitable

								Valve	Front	Single
Nozzle Range					zle Se			Gate	Loading	Nozzle
		I	09	13	16	19	27			
FlowLoc™		Heat conducting sleeves with embedded heaters Threaded base for leak-proof operation	×	×	·	•	*	×	×	×
ВМ		Multi-Gates manifold range Close cavity pitching Economical and robust coil heater	×	×	×	×	~	×	×	×
SM		Multi-Gates single nozzle range Two heaters for maximum temperature control Wide moulding window	×	×	×	×	~	×	×	√


Nozzle Range Selection

To calculate average mass of polymer in nozzle:
 Nozzle flow bore diameter x nozzle length x density

10

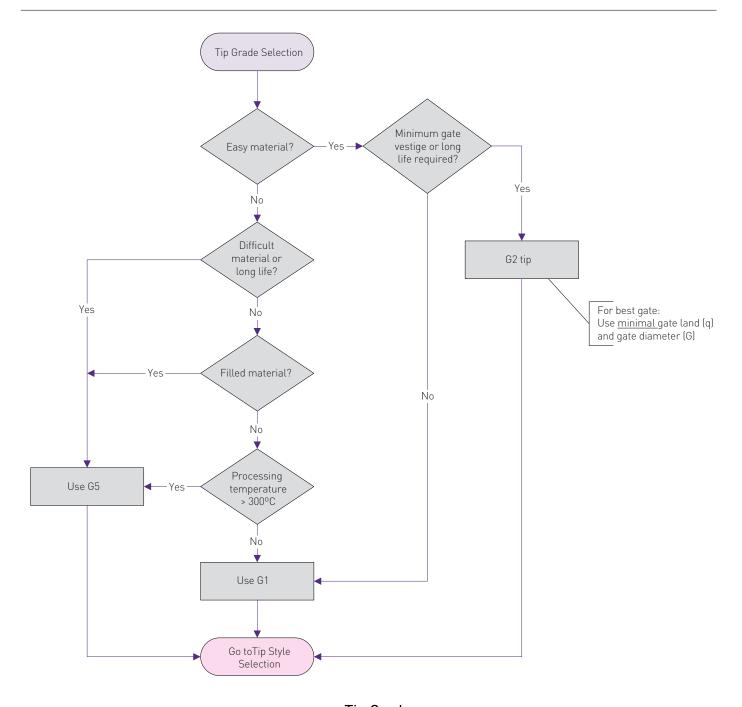
Nozzle Series Selection

Typical Flow Length Ratios (L/t)

				Wall S	Section			
Material	2.0	1.5	1.0	0.8	0.7	0.6	0.5	0.4
ABS	170	96	43	27	21	15	11	7
CA	150	84	38	24	18	14	9	6
EVA	175	98	44	28	21	16	11	7
SAN	120	68	30	19	15	11	8	5
PA	150	84	38	24	18	14	9	6
PC	100	56	25	16	12	9	6	4
HDPE	225	127	56	36	28	20	14	9
LDPE	275	155	69	44	34	25	17	11
PMMA	130	73	33	21	16	12	8	5
РОМ	150	84	38	24	18	14	9	6
PP	250	141	63	40	31	23	16	10
UPVC	100	56	25	16	12	9	6	4

All flow lengths greater than this must be considered thin wall and the nozzle series selected accordingly.

Nozzle Flow Rates

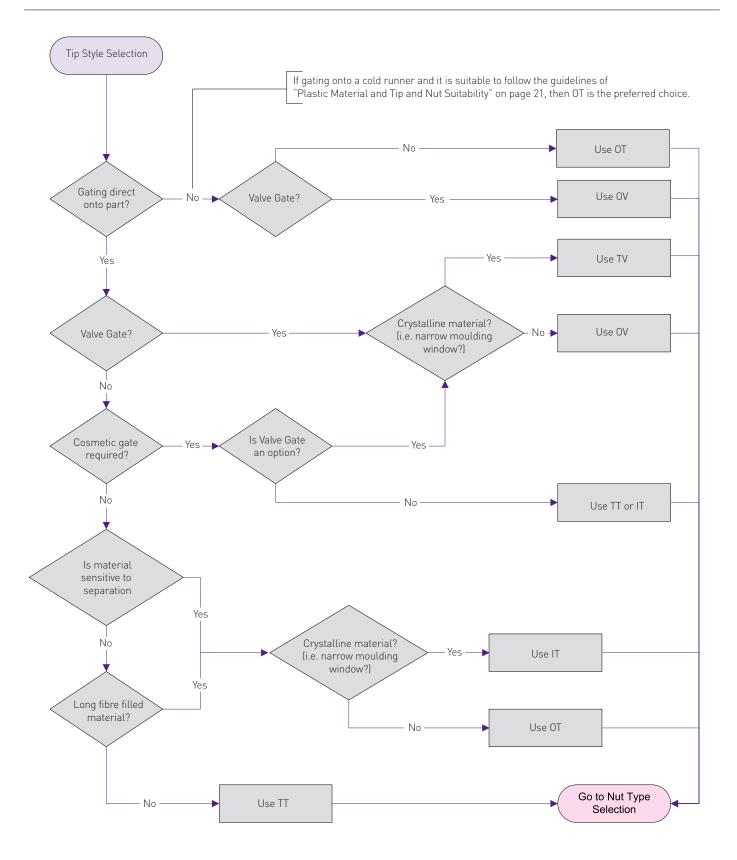

Use the table below to select the correct nozzle series based on the flow rate required and the material category. If the material is a blend material (for example Medium-Difficult or Easy-Medium) always select the higher category to ensure the part can be filled.

Nozzle	Material Specifi	cations		Material Category	2
Series	Material Specifi	Cations	Easy	Medium	Difficult
	Thermal Gate Flow Rate	g/s 1	15	7	
09	Shot Weight	g 1	0.5 - 15	0.5 - 10	
	Thermal Gate Flow Rate	g/s 1	30	15	5
13	Valve Gate Flow Rate	g/s 1	25	12	
	Shot Weight	g 1	0.5 -45	0.5 - 30	0.5 - 15
	Thermal Gate Flow Rate	g/s 1	125	65	25
16	Valve Gate Flow Rate	g/s 1	95	50	20
	Shot Weight	g 1	1 -200	1 - 125	1 - 60
	Thermal Gate Flow Rate	g/s 1	300	150	60
19	Valve Gate Flow Rate	g/s 1	225	110	45
	Shot Weight	g 1	2 -625	2 - 300	2 - 150
	Thermal Gate Flow Rate	g/s 1	600	300	125
27	Valve Gate Flow Rate	g/s 1	420	210	90
	Shot Weight	g 1	10 -2000	10 - 1200	10 - 800

- Additives, flow length and thin wall sections all reduce the effective flow rate and shot weight. To counter the reduced flow rate and shot weight select one nozzle series larger.
- Refer to table on page 21 Plastic Material and Tip and Nut Suitability.

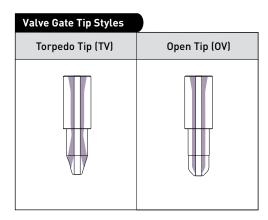
For Multi-Gate Flow Rates refer to page 28.

Tip Grade Selection

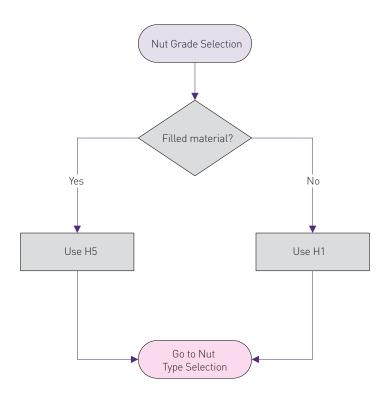


Tip Grades

Tips are manufactured in various grades designed for different applications and wear resistance.

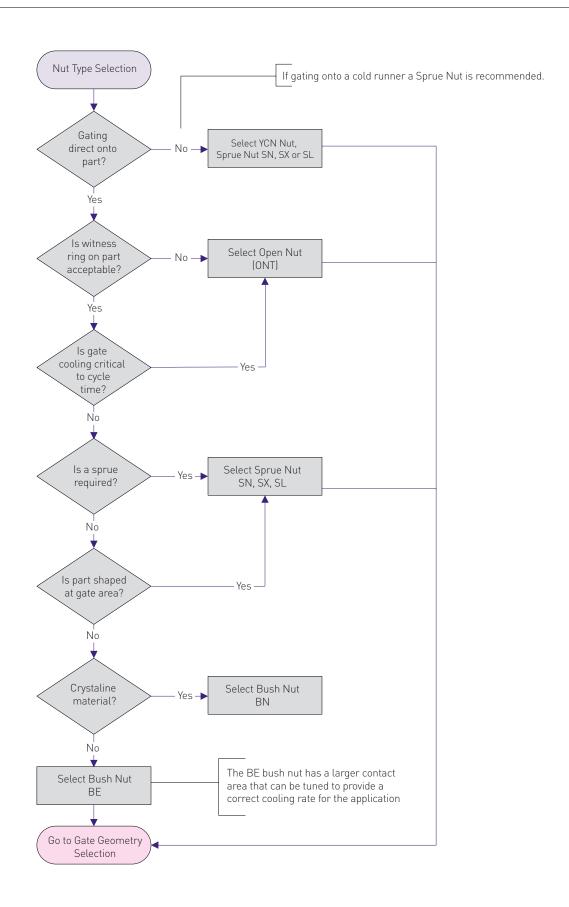

Tip Grade	Recommended use	Manufactured Material	Tip Style Options
G1	Default grade suitable for easy materials	Beryllium Copper with Nickel coating	TT, IT, OT, TV, OV
G2	Long life tip suitable for easy unfilled materials	Beryllium Copper tipped with Steel, Nickel coating	тт, іт
OF.	Long life tip suitable for difficult and abrasive	Carbide	TT, IT
G5	materials	D2 Hard liner	OT, OV

Tip Style Selection



Tip Styles

Thermal Gate Tip Styles		
Multi Hole	Extended	Extended
Torpedo Tip (TT)	Torpedo Tip (TT+5)	Torpedo Tip (TT+10)
Single Hole Torpedo Tip(IT)	Extended Single Hole Torpedo Tip (IT +5)	Extended Single Hole Torpedo Tip (IT +10)
Open Tip (OT)		
Multi-Gate Axial Tip (A)	Multi-Gate Side Tip (S)	

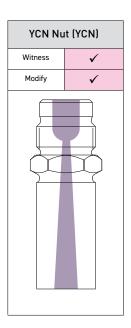

Nut Grade Selection

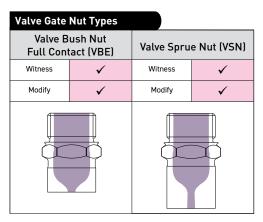
Nuts are manufactured in various grades designed for different applications and wear resistance.

Nut Grade	Recommended use	Manufactured Material	Nut Style Options
Н1	Default grade suitable for unfilled or lightly filled materials	Medium hardness Tool steel	ONT, BN, BE, SN, SL, SX, VBE, VSN
Н5	Long life nut suitable for filled or unfilled materials	High hardness Vanadium tool steel	BN, SN, VBE

Nut Type Selection

System Selection Guide

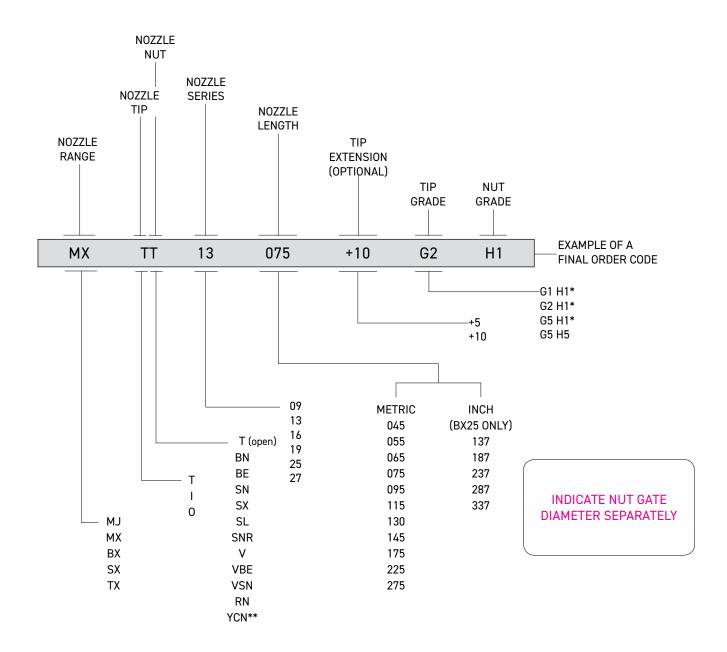

Nut Options


Key	Value
✓	Yes
×	No
Witness	Nut will leave a circular witness mark on part
Modify	Nut must be modified to suit application

Thermal Gate Nut Types									
Bush Nut Full Contact (BE)		Bush N	ut (BN)	Dome I	Nut (BD)				
Witness	✓	Witness ✓		Witness	✓				
Modify	✓	Modify X		Modify	✓				
					+ ×+				
Sprue Nu	ıt +5 (SN)	Sprue Nut + 20 (SX)		Sprue Nu	t + 35 (SL)				

For a Dome Nut supply R1 and K dimensions at time of order.

Sprue Nut +5 (SN)		Sprue Nut + 20 (SX)		Sprue Nu	Sprue Nut + 35 (SL)		Nut (SN-R)
Witness	✓	Witness	✓	Witness	✓	Witness	✓
Modify	✓	Modify	✓	Modify	✓	Modify	✓



Thermal Gate and Valve Gate Nut Types						
Open N	ut (ONT)	Retro Nut (ONT-R)				
Witness	×	Witness	×			
Modify	×	Modify	✓			

	Series	Standard Nut Ød4	Retro Nut Ød4		
	13	10	13.1		
	16	12	16.1		
	19	15	19.1		
d Ød4 →	27	23	27.1		

Nozzle Assembly Order Code for MJ and X-Range Series

- * Larger gate diameters are available as standard
- ** Refer to page 26 for order code diagram for YCN Nut

Tip and Nut Options

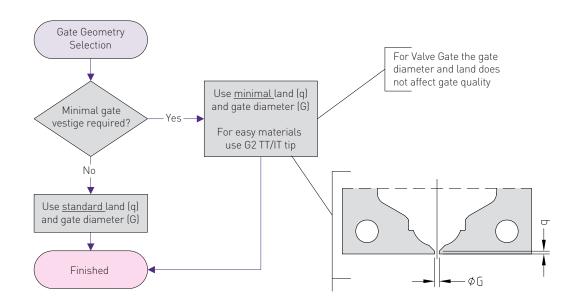
System Selection Guide

Tip and Nut Options

- 1 Not available in X13
- 3 Not available in SX series
- Not available in X27
- 4 Not available in H5

Key	Tip Suitability
✓	Available
****	Highest rating
×	Not Available

			Grades			Nut Style			Features		Plasti	c (Refer to pa	ge 21)
	TIPS	G1	G2	G5	ONT	BN BE	SN SX /SL 4	Gate Quality	Flow Rate	Flow Marks	Easy	Medium	Difficult
	TT Multi Hole Torpedo Tip	✓	✓	✓				***	**	**	***	****	***
	TT+5 Extended Torpedo Tip	✓	✓	×	2	×	×	***	**	**	***	**	×
	TT+10 Extended Torpedo Tip	√	✓	×		×	×	***	*	**	***	*	x
e.	IT Single Hole Torpedo Tip	✓	✓	✓				***	**	***	****	****	***
Thermal Gate	IT+5 Extended Torpedo Tip	√	✓	×		×	×	***	**	***	***	**	×
	IT+10 Extended Torpedo Tip	√	✓	×		×	×	***	*	***	***	*	x
	OT Open Tip	✓	×	✓				**	***	****	****	***	*
	Multi-Gate (A) Axial Tip	✓	×	×		×	×	***	**	**	****	×	×
	Multi-Gate (S) Side Tip	✓	×	×		×	×	**	**	**	****	×	×
Valve Gate	TV Torpedo Tip	√	×	×	1	1	1	***	***	**	***	***	*
Valve	OV Open Tip	✓	×	✓		1	1	***	***	***	***	***	*


Plastic Material and Tip and Nut Suitability

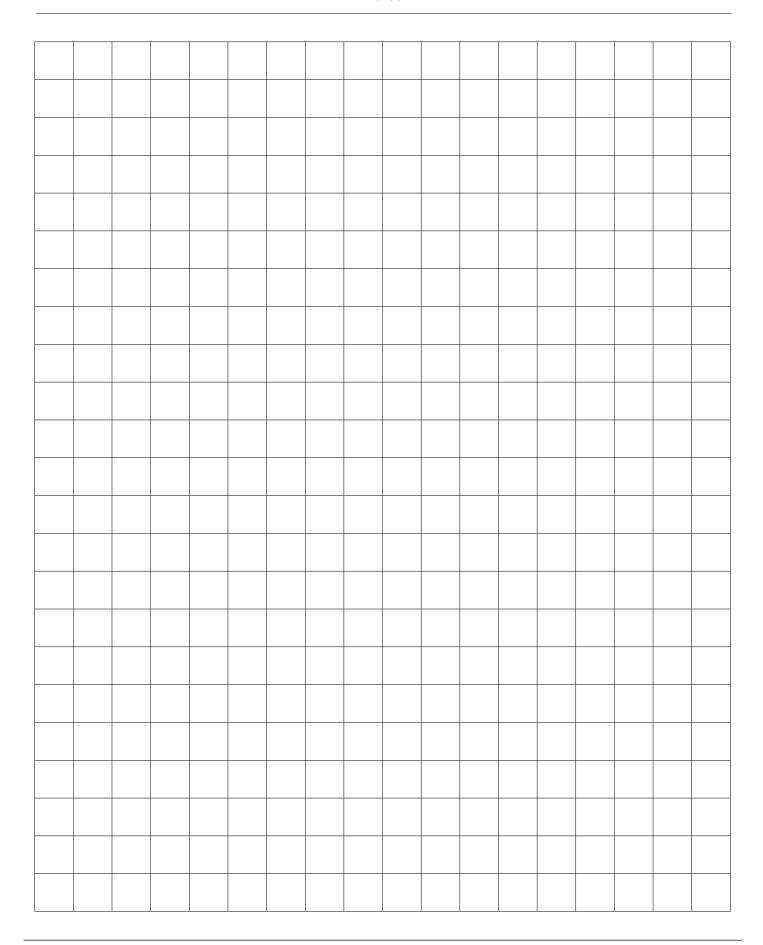
Plastic Material and Tip and Nut Suitability

- Not available in G5
- 2 Only available in G2

Key	Tip Suitability
✓	Suitable
G5	Very suitable with Grade 5 tips and H5 nuts only
•	Application dependant
G5	Application dependant and Grade 5 tip and H5 nuts only
×	Not suitable

N	Material	Nozzle Series and Tip									
C	ategory	09	1	3	1	6	1	9		27	
		TT 1 2	TT	ОТ	П	ОТ	TT	OT	TT	OT	Α
			IT	OV	IT	OV	IT	OV	IT	OV	S
					TV 1		TV 1		TV 1		
	PP	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	PE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Easy	PS	✓	✓	✓	✓	✓	✓	✓	✓	✓	×
	SB	✓	✓	✓	✓	✓	✓	✓	✓	✓	×
	EVA	✓	✓	✓	✓	✓	✓	✓	✓	✓	×
	ABS	•	✓	✓	✓	✓	✓	✓	✓	✓	×
	AS	•	✓	✓	✓	✓	✓	✓	✓	✓	×
	РОМ	•	✓	✓	✓	✓	✓	✓	✓	✓	×
Medium	SAN	•	✓	✓	✓	✓	✓	✓	✓	✓	×
Mec	PA6	•	✓	•	✓	•	✓	•	✓	•	×
	PMMA	•	✓	•	✓	✓	✓	✓	✓	✓	×
	ASA	•	✓	•	✓	✓	✓	✓	✓	✓	×
	TPE	•	✓	•	✓	✓	✓	✓	✓	✓	×
	PA66	•	✓	•	✓	•	✓	•	✓	•	×
	PBT	×	✓	•	✓	•	✓	•	✓	•	×
	PC	×	✓	•	✓	•	✓	•	✓	•	×
	PPS	×	✓	•	✓	•	✓	•	✓	•	×
	PPE	×	✓	•	✓	•	✓	•	✓	•	×
	PPU	×	✓	•	✓	•	✓	•	✓	•	×
	PET	×	✓	•	✓	•	✓	•	✓	•	×
	PES	×	✓	•	✓	•	✓	•	✓	•	×
	PP0	×	✓	•	✓	•	✓	•	✓	•	×
불	LCP	×	✓	•	✓	•	✓	•	✓	•	×
Difficu	PEI	×	✓	•	✓	•	✓	•	✓	•	×
	PP + FILL	×	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	×
	PA + FILL	×	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	×
	SAN + FILL	×	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	×
	PA66 + FILL	×	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	G5/H5	×
	PBT + FILL	×	G5/H5	•	G5/H5	•	G5/H5	•	G5/H5	•	×
	PC + FILL	×	G5/H5	⊙	G5/H5	•	G5/H5	•	G5/H5	•	×
	PPS + FILL	×	G5/H5	•	G5/H5	•	G5/H5	•	G5/H5	•	×
	PPE + FILL	×	G5/H5	•	G5/H5	•	G5/H5	•	G5/H5	•	×
	PPU + FILL	×	G5/H5	•	G5/H5	⊙	G5/H5	•	G5/H5	•	×
	PET + FILL	×	G5/H5	•	G5/H5	•	G5/H5	•	G5/H5	•	×

Thermal Gate Land Length (q)


Gate land ('q') Size	Cosmetic Gate	Gate Life	Other Factors		
>0.20mm	Not Recommended		Increased injection pressure, premature gate freeze off		
0.20mm	*	****	Recommended for materials with high % filler		
0.15mm	**	***	Recommended for materials with medium % filler		
0.10mm	***	**	Good balance between gate cosmetics and life		
0.05mm	****	*	Strong cavity steel required. Cooled inserts required near to gate		
<0.05mm	Not Recommended		Sharp edge breaks on first few shots, poor wear resistance		
			Limited cooling at gate can result in stringing		

Recommended Thermal Gate Diameter (ØG)

Material	Tip Grade	Nozzle Series								
Material		09	13	16	19	27				
	G1/H1	-	0.8 - 1.3	0.9 - 1.4	1.1 - 1.6	1.8 - 2.5				
Unfilled	G2/H1	0.7 - 0.8	0.7 - 1.3	0.8 - 1.4	1.0 - 1.6	1.6 - 2.5				
	G5/H1	-	0.9 – 1.3	1.0 - 1.4	1.2 - 1.6	2.0 - 2.5				
Filled	G5/H1	-	1.0 - 1.4	1.2 - 1.5	1.5 - 1.8	2.4 - 2.8				
Filled	G5/H5	-	1.4 –1.6	1.5 – 1.7	1.7 - 2.0	2.6 - 2.8				

It is always recommended to start with a small gate and adjust as required.

Notes

System Selection Guide

 $Gating\ Options\ -\ MX/BX/SX/FlowLoc^{^{\text{\tiny{M}}}}$

Standard Sealing Diameter								
Series	Series 13 16 19 27							
Ød4 10 12 15 23								

	10	NT			ON ⁻	Γ+5			ONT	+10	
13	16	19	27	13	16	19	27	13	16	19	27
✓	✓	✓	✓	✓	✓	✓	×	✓	✓	✓	✓
► L (nozzle)		Ød4		5.0	0						
	SN	+5			SX	+20			SL	+35	
13	16	19	27	13	16	19	27	13	16	19	27
✓	✓	✓	✓	✓	✓	✓	×	✓	✓	✓	✓
5.0 — (nozzle)		Ød4 -	<u></u>		250.0 000 000 000 000 000 000 000						
		/ BE			I	BE .			VS	1	
13	16	19	27	13	16	19	27	13	16	19	27
► L (nozzle)		Ød4 -		×		Ød4 -	✓ 	X			

Gating Options - YCN

	YCN	+20		YCN +35				
13	16	19	27	13	16	19	27	
✓	✓	✓	×	×	×	×	✓	
- 50.0 →		3d4 -		35.0		o dd4		

Standard Sealing Diameter							
Series 13 16 19 27							
Ød4	10	12	15	23			

Gating Options - Multi Gates

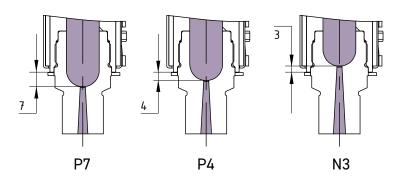
	Axial	Gate*		Side Gate*				
13	16	19	27	13	16	19	27	
×	×	×	✓	×	×	×	✓	
L (nozzle)				L (nozzle)				

^{*} Pocket dimensions to be supplied by Mastip

YCN Open Tipless Nut

YCN Nut is designed for X-range nozzles, providing open flow moulding. An ideal moulding solution for indirect-feed via a cold runner. Ideal for Thermal Gate applications.

YCN Nut


Features

- Internal nut profiles to suit different materials and temperature requirements
- No high-conductivity tip insert required
- · Tipless nut provides open flow moulding
- · Minimises melt shear
- · Lowers the overall pressure drop through the gate
- · Provides a broad repeatable moulding window

Applications

- Moulding applications that suit open flow injection
- · Cosmetic gate is not required on moulded part
- · Ideal for indirect-feed via a cold runner
- Moulding applications where a moulded sprue is acceptable
- Thermal Gate applications

Gating Options

P7	Easy material/ Low temperature	Gate is located 7mm forward of the heat source	E.g. PP, PE, ABS, ASA, SAN
P4	Mid-Range	Gate is located 4mm forward of the heat source	E.g. PC, POM, PMMA
N3	Difficult material/ High temperature	Gate is located 3mm behind the heat source	E.g. PA, PBT, PET, PPS PEI, PPO

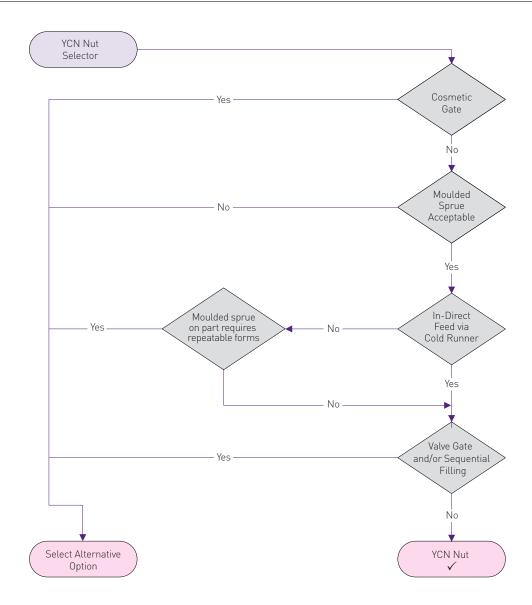
YCN Nut Extension

YCN Nuts are stocked with a standard extension length

X13	X16	X19	X27
20mm	20mm	20mm	35mm

Gate Diameter

X-Range YCN Nuts are stocked with standard gate diameters according to the nozzle series, nut style and filled or unfilled material.


Unfilled	X Range – YCN Nut Style									
Series	P7	P4	N3							
13	Ø1.2	Ø1.3	Ø1.3							
16	Ø1.4	Ø1.5	Ø1.5							
19	Ø1.8	Ø2.0	Ø2.0							
27	Ø2.2	Ø2.5	Ø2.5							

Filled	X Range – YCN Nut Style									
Series	P7	P4	N3							
13	Ø1.6	Ø1.8	Ø1.8							
16	Ø1.8	Ø2.0	Ø2.0							
19	Ø2.2	Ø2.5	Ø2.5							
27	Ø2.7	Ø3.0	Ø3.0							

Custom gate and taper available on request.

Standard sprue taper is 6°

YCN Nut Selection

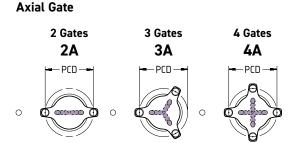
Nozzle Order Code for X-Range YCN Nut Series

NOZZLE RANGE	YCN NUT	NOZZLE SERIES	NOZZLE LENGTH	GATE PROFILE	POLYMER CLASSSIFICATION	
ВХ	YCN	27	175	P4	F	EXAMPLE OF A FINAL ORDER CODE
MX BX SX	YCN	13 16 19 27	045 055 065 075 075 095 115 130 145 175 225 275	P7 P4 N3	U (Unfilled) F (Filled)	

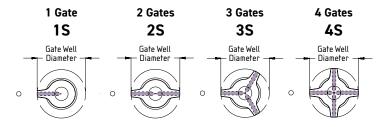
Multi-Gates

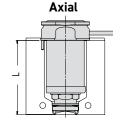
Mastip's Multi-Gate solutions are engineered specifically for challenging applications requiring close pitch gates in restricted areas where conventional gating methods aren't possible.

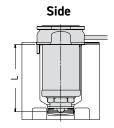
Multi-Gates


Features

- Axial multi-gates allow close cavity pitching with a pitch circle diameter (PCD) from 10.00 to 22.00 with the ability to offer 2 to 4 gates per tip
- Side multi-gate allowing close cavity pitching with a gate well diameter from 22.30mm to 26.80mm with the ability to offer 1 to 4 gates per tip
- Highly conductive tip allowing for precise thermal control
- Tip flow channels designed to optimise and balance the thermal profile
- The M-Range nozzles are designed specifically for multi-gate solutions incorporating BX/SX proven technology


Applications


- Multiple part direct injection gating with one nozzle either in an Axial or Side gate tip style
- Side multi-gates allow internal side gating on single complex round parts that need a highly balanced fill
- Axial multi-gates allow for direct gating on single complex round parts that need a highly balanced fill
- Only polymers that are easy to process such as polyolefins with long residence times to be processed through the multi-gates


Gate Styles

Side Gate

BM / SM Standard Gate Lengths

Gate	Nozzle	Series	L (Nozzle)								
Axial	ВМ	27	75	95	115	145	175	225	275		
Gate	SM	27	75	95	115	145	175	225	275		
Side	ВМ	27	69	89	109	139	169	219	269		
Gate	SM	27	69	89	109	139	169	219	269		

Multi-Gate Flow Rates

Nozzle Series	Material Sp	Material (Polyolefin)		
	Flow Rate	g/s/gate	15	
	Shot Weight	g	0.5 - 15	
M27	Gate Size – Axial	mm	0.7 - 1.0	
	Gate Size – Side	mm	0.5 - 1.0 (max 70% part well thickness)	

Multi-Gates Selection

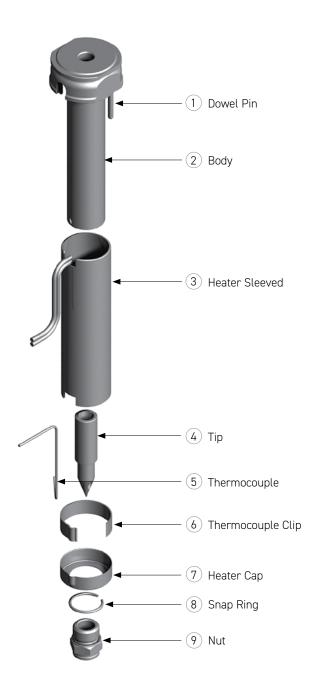
^{*} Number of gates required not included in flow chart, contact Mastip.

MX Nozzle Overview

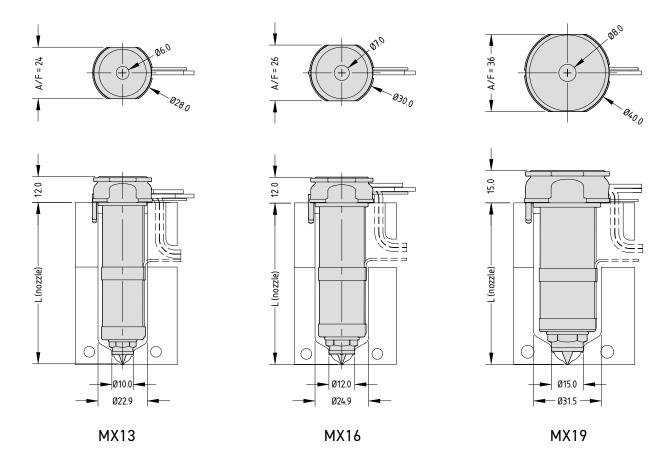
MX nozzle, specifically designed for multi cavity manifold systems and hot halves.

MX FEATURES

Mould design


- · Efficiently designed profile to allow closer cavity pitching
- · Shares the same gate profiles as BX and SX
- · Available in both thermal and valve gate options
- Consistent nozzle lengths across the range
- Ability to mould large parts with smaller nozzles due to optimum flow characteristics

Operation


- Wide moulding window
- · Excellent temperature profile and thermal stability
- · Operates at low moulding pressure and temperature
- Optimum cycle times due to superior thermal insulation
- Uses an advanced micro coil heater with integrated heat deflection tube

Installation and maintenance

- Front loading capability for easier servicing of tips, heaters and thermocouples
- · Simple machining and installation requirements
- · Improved reliability due to the use of advanced materials
- Common tip and nut options provide ready availability of spare parts

MX Nozzle Series

MX Standard Lengths										
Series		L (nozzle)*								
13 Series	45	55	65	75	95	115	130	145	175	
16 Series	45	55	65	75	95	115	130	145	175	
19 Series		55	65	75	95	115	130	145	175	

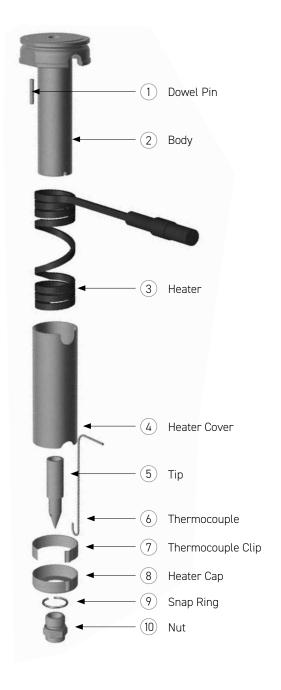
 $[\]ensuremath{^{*}}$ Custom lengths available on request, BX recommended

BX Nozzle Overview

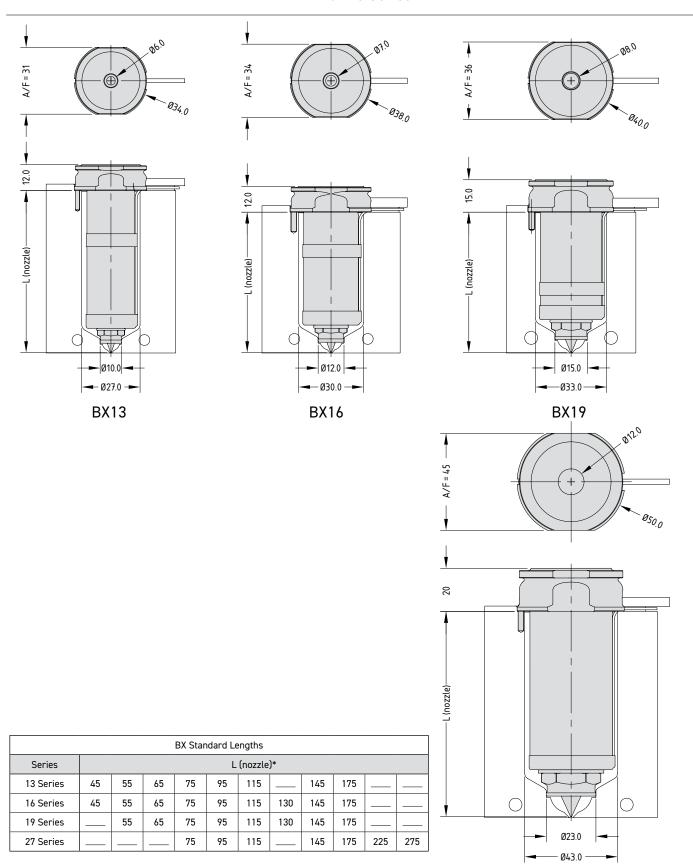
BX nozzle is designed to provide cost sensitive solutions for low to medium cavitation applications, not requiring hot half construction.

BX FEATURES

Mould Design


- · Ability to easily order special length nozzles
- · Shares the same gate profiles as MX and SX
- · Available in both thermal and valve gate options
- Consistent nozzle lengths across the range
- Ability to mould large parts with smaller nozzles due to optimum flow characteristics

Operation


- Wide moulding window
- Excellent temperature profile and thermal stability
- · Operates at low moulding pressure and temperature
- Optimum cycle times due to superior thermal insulation
- · Uses an economical and robust coil heater

Installation and Maintenance

- · Simple machining and installation requirements
- · Improved reliability due to the use of advanced materials
- Common tip and nut options provide ready availability of spare parts

BX Nozzle Series

^{*} Custom lengths available on request

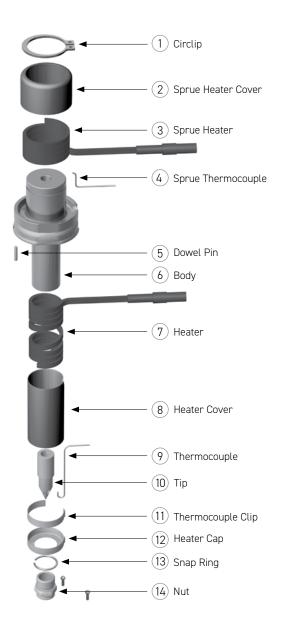
BX27

SX Nozzle Overview

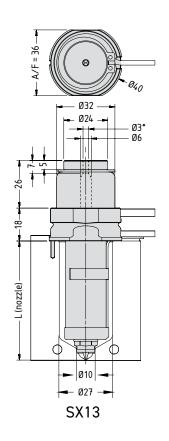
With two heaters the SX nozzle is perfectly suited for all single nozzle applications.

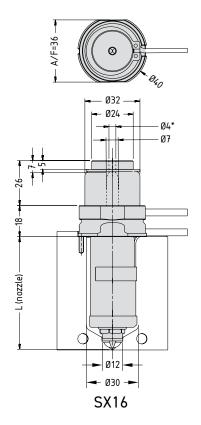
SX FEATURES

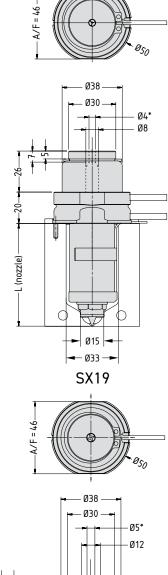
Mould Design

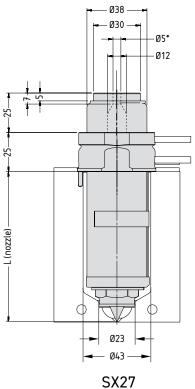

- · Ability to easily order special length nozzles
- · Shares the same gate profiles as MX and BX
- · Consistent nozzle lengths across the range
- Ability to mould large parts with smaller nozzles due to optimum flow characteristics

Operation


- Separate heater for the nozzle head for maximum temperature control
- · Wide moulding window
- · Excellent temperature profile and thermal stability
- · Operates at low moulding pressure and temperature
- · Optimum cycle times due to superior thermal insulation
- · Uses economical and robust coil heaters


Installation and Maintenance


- Simple machining and installation requirements
- · Improved reliability due to the use of advanced materials
- Common tip and nut options provide ready availability of spare parts


SX Nozzle Series

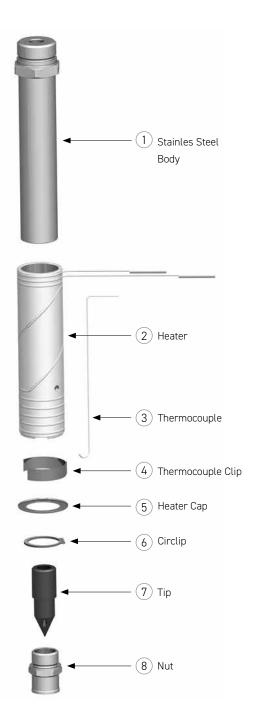
SX Standard Lengths											
Series		L (nozzle)**									
13 Series	45	55	65	75	95	115	145	175			
16 Series	45	55	65	75	95	115	145	175			
19 Series		55	65	75	95	115	145	175			
27 Series				75	95	115	145	175	225	275	

FlowLoc™ Range Overview

FlowLoc™ Technology Range are designed to provide a secure, leak-proof solution for multi-cavity manifold systems.

FLOWLOC™ FEATURES

Design

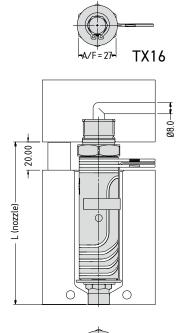

- Available in 16, 19 and 27 Series nozzle in a variety of lengths with the ability to order special length nozzles
- Features a threaded base to attach securely to the manifold
- · Available in thermal gate
- Suitable for low to high cavity applications
- Shares the same gate profiles as existing X-Range nozzles

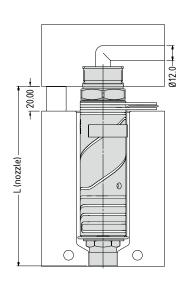
Operation

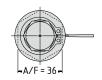
- Incorporates advanced heating technology with embedded heaters for exceptional thermal performance
- Threaded nozzle screws directly into the manifold providing a secure, leak-proof solution
- Capable of processing a wide range of polymers including abrasive fillers
- Excellent thermal profile along the entire length of the nozzle ensures a wide moulding window
- · Suitable for high pressure applications

Installation and Maintenance

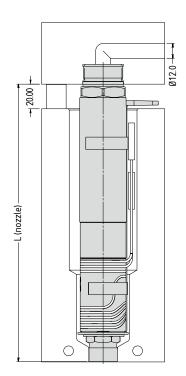
- · Simple installation via threaded base
- · Utilises Mastip's proven X-Range tips and nuts
- Individual components are readily available on express order from our service team

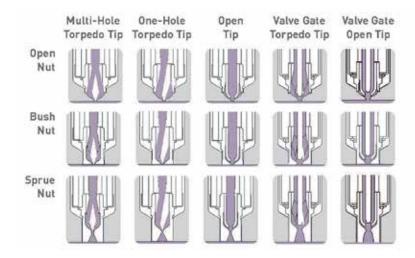



FlowLoc™ Range

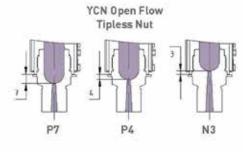


FlowLoc™ Standard Lengths								
Series		L (nozzle)*						
16 Series	75	95	115	130	145	175		
19 Series	75	95	115	130	145	175		
27 Series	75	95	115	130	145	175	225	275


 $[\]ensuremath{^{*}}$ Lengths can be customised to suit your requirements on request



TX27075 - TX27175



TX27225 - TX27275

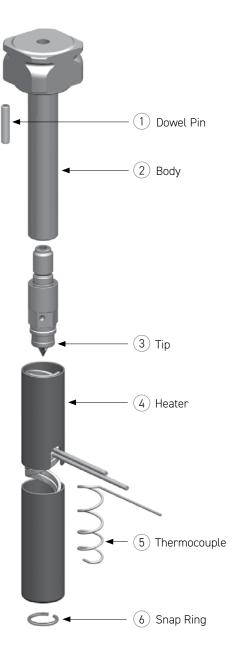
TX19

MJ Nozzle Overview

MJ nozzle, specifically designed for close cavity pitching.

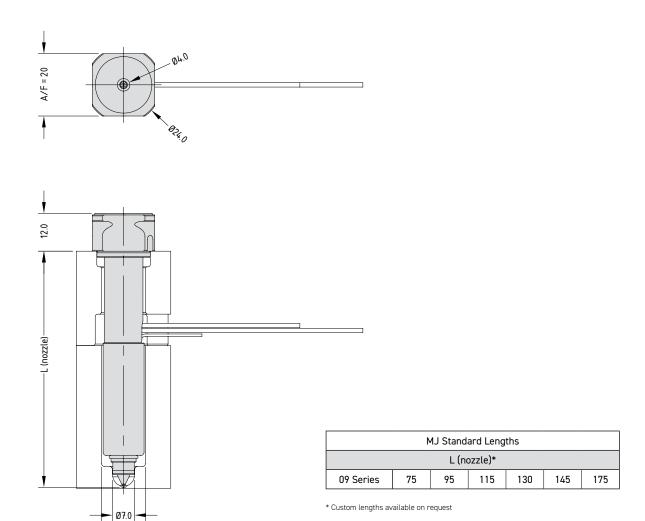
MJ FEATURES

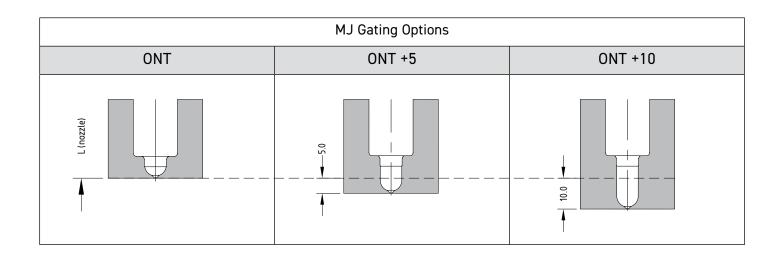
Mould design


- Nozzle pocket profile for improved cooling performance and gate strength
- · Optimal flow characteristics for ease of moulding
- Close cavity pitching

Operation

- Wide moulding window
- Excellent temperature profile and thermal stability
- · Operates at low moulding pressure and temperature
- Short cycle times


Installation and maintenance


- Simple installation
- Front loading for ease of servicing
- Improved reliability

Ø14.0

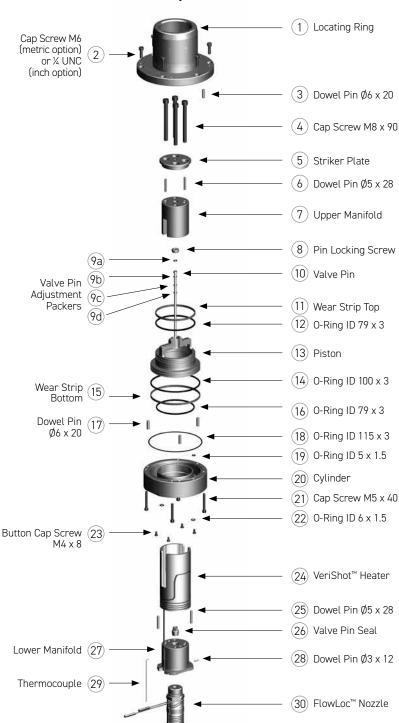
MJ Nozzle Series

VeriShot™ Single Valve Gate System

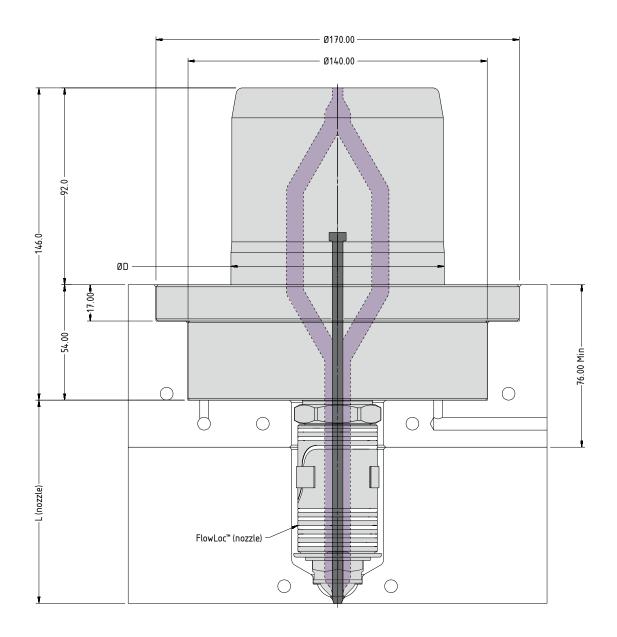
Mastip's VeriShot™ is an extremely compact, adjustable single valve gate system. The VeriShot™ incorporates advanced heating technology for exceptional thermal performance in applications requiring high cosmetic finish, high flow rates and dimensional accuracy.

VERISHOT™ FEATURES

Design


- Available to suit TX19 & TX27 series threaded nozzles
- · Compact annular design
- Reduced mould height
- Multiple gate profiles to suit a broad range of applications
- VeriShot[™] functions as a locating ring for mould alignment
- Locating ring supplied in metric and imperial sizes

Operation


- · Advanced heating technology
- · Exceptional thermal performance
- Capable of processing a wide range of polymers
- · Adjustable valve pin
- Incorporates superior FlowLoc™ Technology providing a secure, leak-proof solution

Installation and Maintenance

- Simple Installation
- Utilises proven X-Range tips and nuts

$VeriShot^{^{\mathsf{TM}}}\,Single\,\,Valve\,\,Gate\,\,System$

	Metric	Inch
ØD	99.85mm	3.99"

	VeriShot™ Nozzle Compatibility				
Description	FlowLoc™ Nozzle	Tip	Supplied Pin Size	L (nozzle)	
VeriShot [™] X19	TX19	0V / TV	Ø3.0	75 - 175	
VeriShot™ X27	TX27	00/10	Ø5.0	75 - 275	

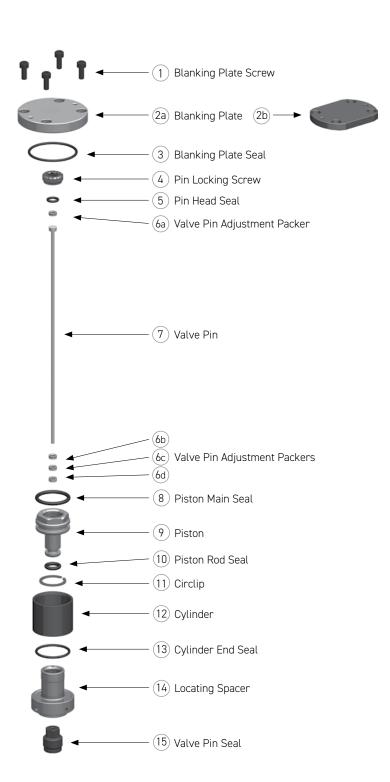
Note

1. Lengths can be customised to suit your requirements on request

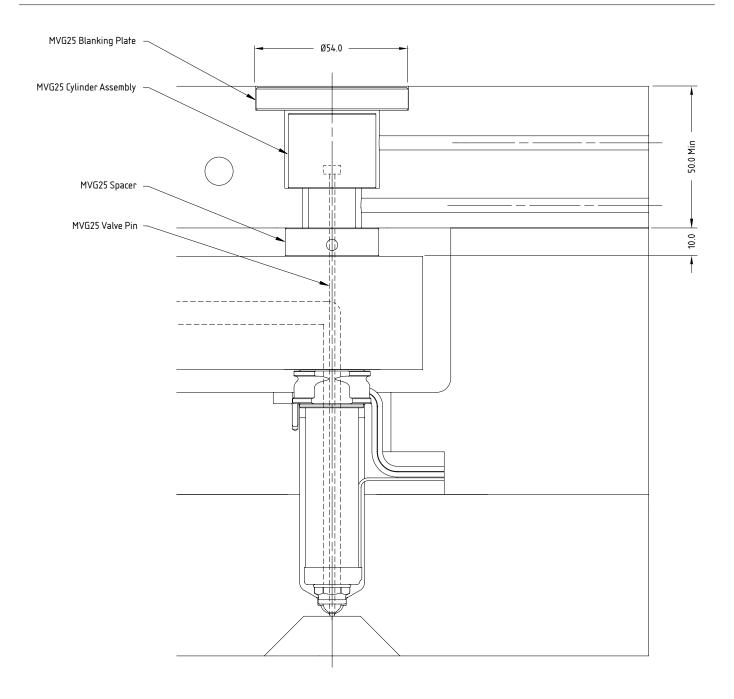
MVG25 Headed Pin Valve Gate System

MVG25 FEATURES

Mould Design


- · Available to suit MX and BX Nozzles
- Standard minimal pitching is
 55mm can be modified to fit 43mm
- Backplates 50mm minimum
- · Conical or Cylindrical shut off
- · Easy machining of the pockets
- Pneumatic circuit integrated with the backplate

Moulding Benefits


- · Reduced moulding pressure
- Increased moulding window
- Lower mould filling stress results in better part quality
- · Reduced gate cooling requirements

Installation and Maintenance

- Easy machining and installation
- · Easy seal replacement
- · Valve pin height is adjustable
- Comes with Headed Pin design, with incremental adjustment

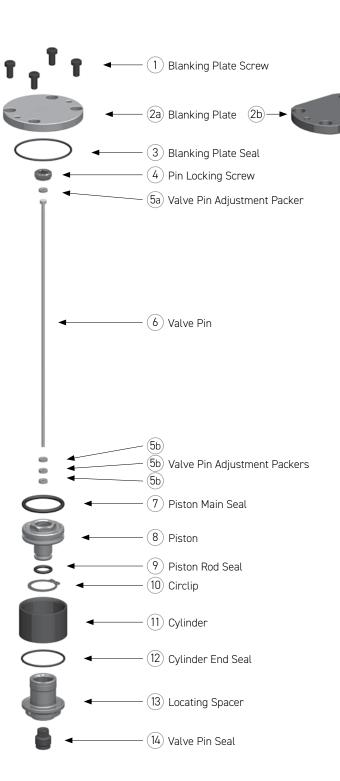
MVG25 Headed Pin Valve Gate System

MVG25 Nozzle Compatibility				
Description	Nozzle	Tip	Nozzle Length	Supplied Pin Size
MVG25-P1 Headed Pin	MX13 / BX13	0V	45 – 175	Ø2.0
MVG25-P1 Headed Pin	MX16 / BX16	0V / TV	45 - 175	Ø2.5

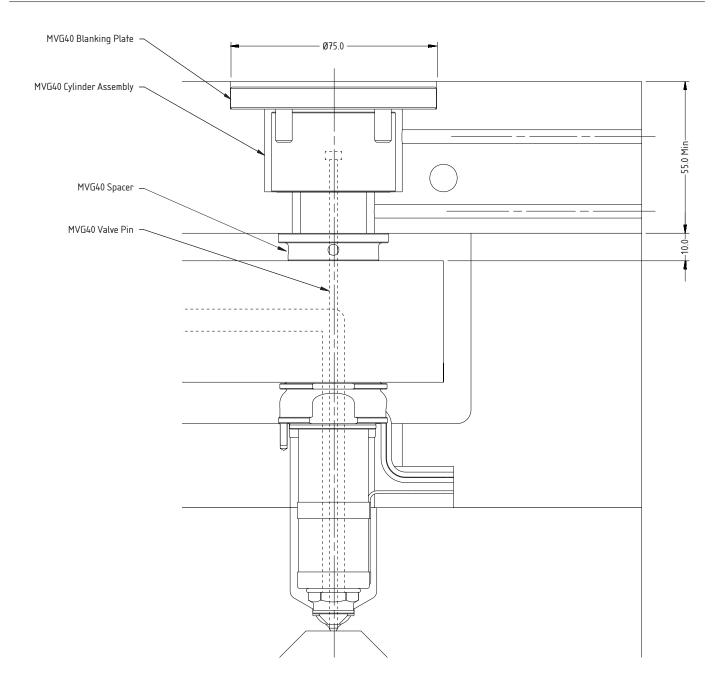
MVG40 Headed Pin Valve Gate System

MVG40 FEATURES

Mould Design


- Available to suit MX and BX Nozzles
- · Standard minimal pitching is 75mm
 - can be modified to fit 58mm pitching
- Backplates 55mm minimum
- · Conical or Cylindrical shut off
- Easy machining of the pockets
- · Pneumatic circuit integrated with the backplate

Moulding Benefits


- · Reduced moulding pressure
- · Increased moulding window
- Lower mould filling stress results in better part quality
- Reduced gate cooling requirements

Installation and Maintenance

- · Easy machining and installation
- Easy seal replacement
- · Valve pin height is adjustable
- Comes with Headed Pin design, with incremental adjustment

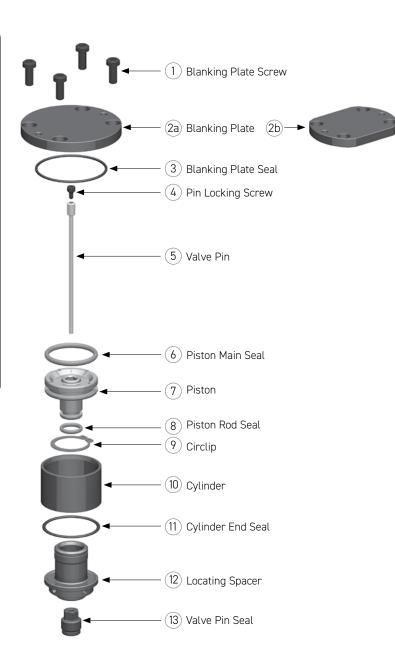
MVG40 Headed Pin Valve Gate System

MVG40 Nozzle Compatibility				
Description	Nozzle	Tip	Nozzle Length	Supplied Pin Size
MVG40-P1 Headed Pin	MX13 / BX13	0V	45 - 145	Ø2.0
MVG40-P1 Headed Pin	MX16 / BX16	0V / TV	45 - 145	Ø2.5
MVG40-P1 Headed Pin	MX19 / BX19	0V / TV	55 - 175	Ø3.0
MVG40-P1 Headed Pin	BX27	0V / TV	75 - 275	Ø5.0

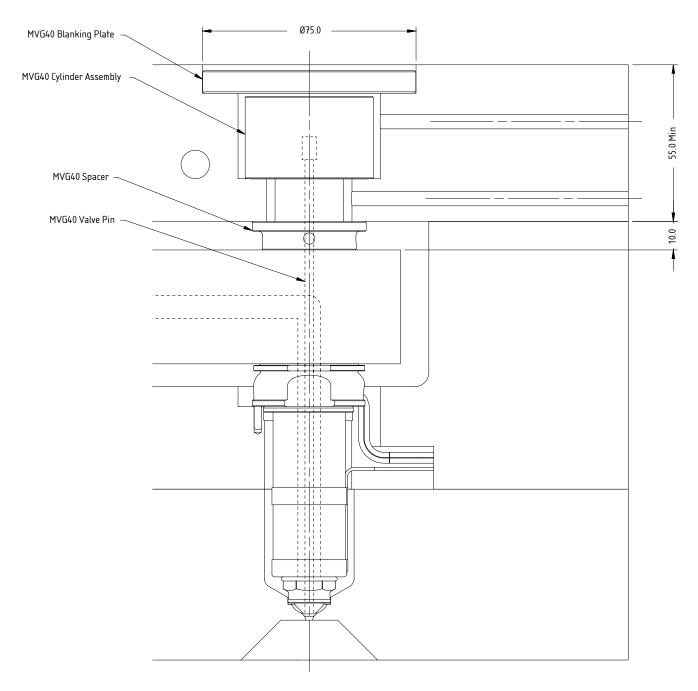
MVG40 Threaded Pin Valve Gate System

MVG40 FEATURES

Mould Design


- Available to suit MX and BX Nozzles
- Standard minimal pitching is 75mm
 - can be modified to fit 58mm pitching
- Backplates 55mm minimum
- · Conical or Cylindrical shut off
- · Easy machining of the pockets
- · Pneumatic circuit integrated with the backplate

Moulding Benefits


- Reduced moulding pressure
- · Increased moulding window
- Lower mould filling stress results in better part quality
- · Reduced gate cooling requirements

Installation and Maintenance

- Easy machining and installation
- Easy pin adjustment and seal replacement while the mould remains assembled
- · Comes with Threaded Pin design fully adjustable

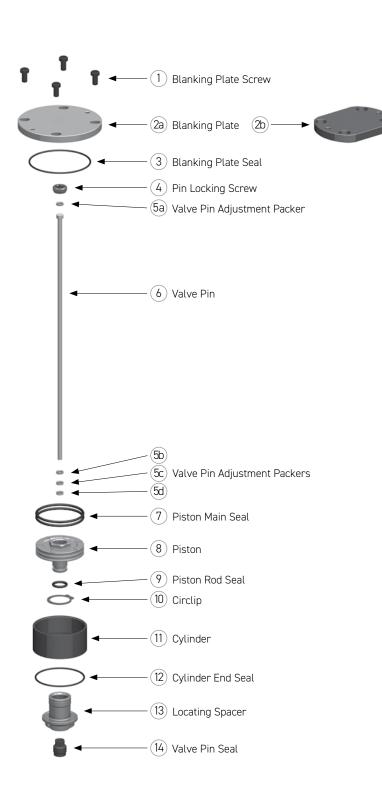
MVG40 Threaded Pin Valve Gate System

MVG40 Nozzle Compatibility				
Description	Nozzle	Tip	Nozzle Length	Supplied Pin Size
MVG40-P2 Threaded Pin	MX13 / BX13	OV	45 - 145	Ø2.0
MVG40-P2 Threaded Pin	MX16 / BX16	OV / TV	45 - 145	Ø2.5
MVG40-P2 Threaded Pin	MX19 / BX19	0V / TV	55 - 175	Ø3.0
MVG40-P2 Threaded Pin	BX27	OV / TV	75 - 275	Ø5.0

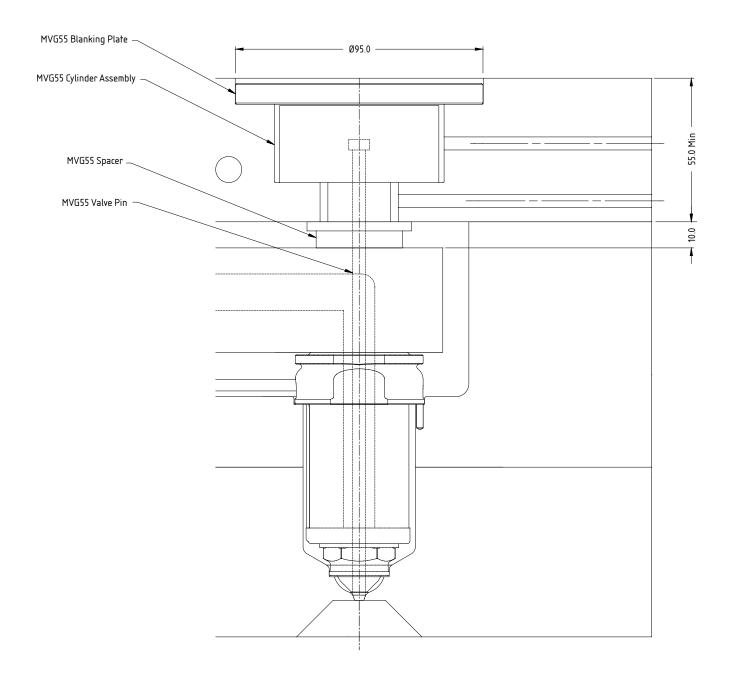
MVG55 Headed Pin Valve Gate System

MVG55 FEATURES

Mould Design


- Available to suit BX Nozzle in 27 Series
- Standard minimal pitching is 95mm can be modified to fit 74mm
- · Backplates 55mm minimum
- Easy machining of the pockets
- Pneumatic circuit integrated with the backplate

Moulding Benefits


- Reduced moulding pressure
- · Increased moulding window
- Lower mould filling stress results in better part quality
- · Reduced gate cooling requirements

Installation and Maintenance

- Easy machining and installation
- Easy seal replacement
- · Valve pin height is adjustable
- Comes with Headed Pin, with incremental adjustment

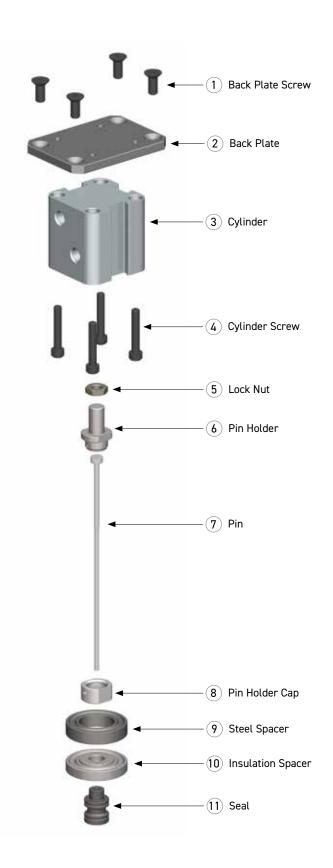
MVG55 Headed Pin Valve Gate System

MVG55 Nozzle Compatibility				
Description Nozzle Tip Nozzle Length Supplied Pin Size				
MVG55-P1 Headed Pin	BX27	OV / TV	75 – 275	Ø5.0

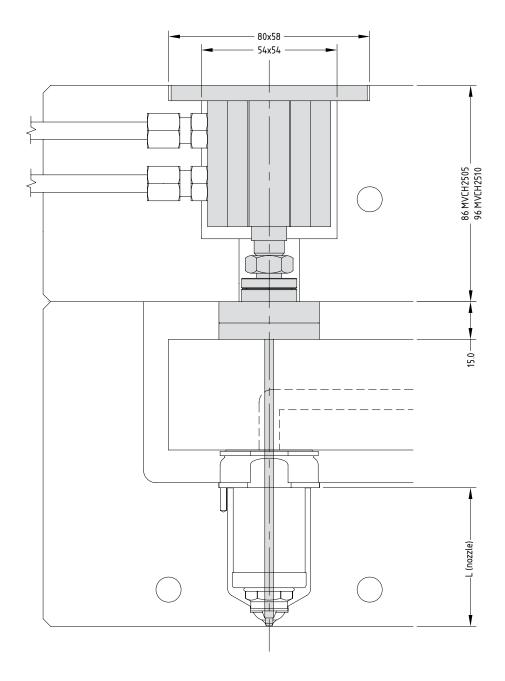
MVCH Valve Gate System

MVCH FEATURES

Mould Design

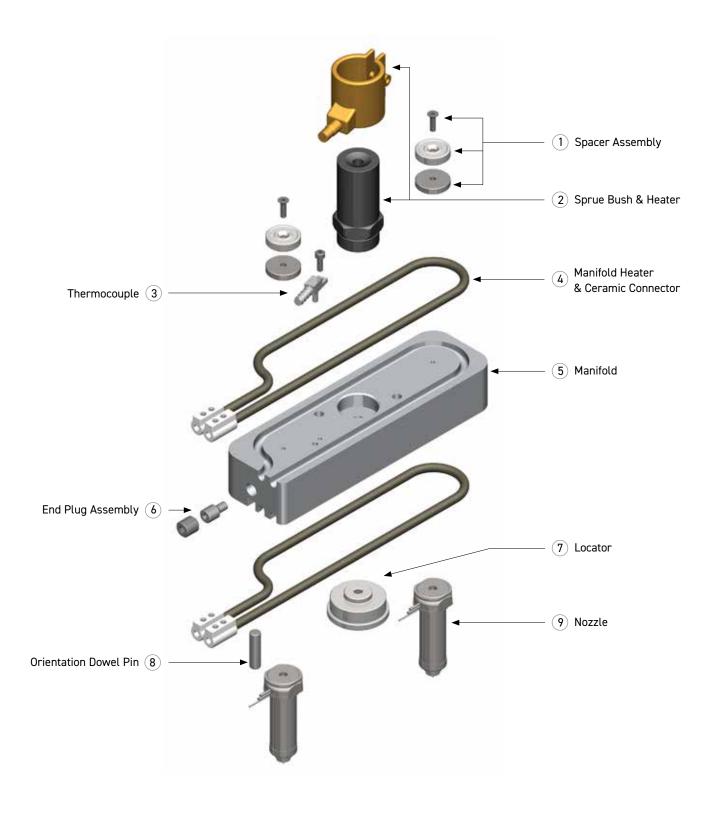

- · Available to suit MX 16, 19 and BX 16, 19 and 27 series
- · Standard minimal pitching is 58mm
- Backplates 86mm minimum
- · Easy machining of pockets
- · Hydraulic actuation

Moulding Benefits


- Improved part quality
- Reduced moulding pressure
- Increased moulding window
- · Lower mould filling stress results in better part quality
- Reduced gate cooling requirements

Installation and Maintenance

· Adjustable pin length


MVCH Valve Gate System

	MVCH Nozzle Compatibility				
Description	Stroke	Tip	Supplied Pin Size	Nozzle	L (nozzle)
MVCH2505-2.5	5	TV	Ø2.5	MV1/ / DV1/	45 - 115
MVCH2510-2.5	10	OV	Ψ2.5	MX16 / BX16	45 - 115
MVCH2505-3	5	TV	Ø3.0	MV10 / DV10	55 - 115
MVCH2510-3	10	OV	ψ3.0	MX19 / BX19	33 - 113
MVCH2505-5	5	TV	Ø5.0	BX27	75 - 225
MVCH2510-5	10	OV	ψ5.0	BX27	75 - 225

Manifold Components

Exploded view of a Standard 2 Drop Hot Runner System

Selecting a Manifold Configuration

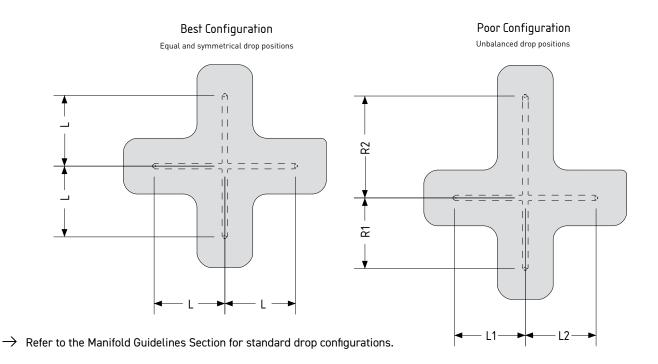
When deciding on a manifold layout it is important to consider the following:

- · The number of injection points required per cavity
- The number of cavities in the mould
- · Minimum distance between nozzles
- · Balancing of the manifold
- · Spacing of cavities to provide adequate room for cooling
- Gate and cavity
- · Strength of the mould
- · Sufficient steel between cavities
- · Mould size versus machine platen size
- · Total shot weight

For multi-cavity moulds balancing is critical to achieve consistent dimensions, cosmetic appearance and processing conditions across cavities. It is therefore strongly recommended that for multi-cavity moulds a manifold layout providing natural balancing is used.

Natural Balancing: In order to achieve natural balance, the material must flow through identical geometry from the machine nozzle to each of the gates.

This means identical:


- · Flow distance
- Runner diameters
- Number and angle of bends

This ensures that every gate receives material in exactly the same condition. With natural balance, the balance is inherent in the design, and is not based on a specific material or processing temperature.

Rheological balancing: Is a method of balancing by using different runner sizes to artificially provide identical pressure drop at each gate. To accurately predict this, the flow properties of the material must be known, along with the flow rate and anticipated processing temperature. Any variation from the processing conditions used during design will result in an unbalanced system.

Some drop configurations can not be naturally balanced unless the drops are on a PCD and must therefore be rheologically balanced. E.g. 3, 5, 7, 9, 10, 11, 13, 14, 15, 17-23 etc

All standard Mastip manifolds (except 3 Drop 3x1) are naturally balanced.

Nexus[™] Systems

Mastip's Nexus[™] Pre-Assembled and Pre-Wired hot runner systems are designed for fast, simple installation out of the box without requiring any further technical assembly. Nexus[™] Systems incorporates superior FlowLoc[™] technology providing a secure, leak-proof solution. The FlowLoc[™] range ensures an excellent thermal performance using the latest heating technology.

NEXUS™ SYSTEMS

- Fully customised to suit your application requirements
- Able to process commodity and engineering grade polymers
- Fast, simple installation out of the box
- Advanced heating technology with embedded heaters
- FlowLoc[™] nozzles connect securely to manifold via threaded base
- Stainless steel nozzles
- Proven performance of X-Range nozzle technology
- Customised trunking for wiring
- Advanced heating technology for superior thermal performance
- Leak-proof solution via screwed in nozzles
- Accidental cold starting will not result in polymer leakage
- · User-friendly maintenance
- Excellent thermal profile ensures a wide moulding window
- Unit removes easily from mould facilitating quick, easy service and maintenance

Hot Half System

All Mastip's Hot Half solutions, from low to high cavity thermal or valve gate systems, are delivered as a complete solution to integrate seamlessly with your completed mould.

HOT HALF FEATURES

Applications

- Fully customised to suit your application requirements
- Able to process commodity and engineering grade polymers

Features

- Plates available in high quality P20 steel or 420 stainless steel
- Proven performance of X-Range nozzle technology
- Delivered fully assembled and fully wired

Benefits

- Advanced heating technology for superior thermal performance
- Easy servicing of nozzles, tips, thermocouples and heaters
- Heaters are front loading
- Excellent thermal profile ensures a wide moulding window
- 3-year leak proof guarantee

Additional Considerations

To select a Hot Runner System to match your part and material specifications consideration must

be given to the following:

- · Gate type
- · Gate size
- · Nozzle range and series
- Nozzle tip style
- Nozzle nut type

Selecting Material

There are three broad categories of materials each relating to its moulding characteristics:

- Easy
- Medium
- Difficult

When selecting material consider the following:

• Materials with large percentages of filler (for example, >15%) or very low MFI, the material classification moves up a grade (for example, easy to medium).

Selecting a Gate Type

The following factors must be considered when selecting a gate type:

- · Shot size of part
- Material to be moulded
- Material
- Viscosity
- Additives
- Glass fibre
- Flame retardant
- Gate surface finish
- Thickness of part walls
- Longest flow length of part

Required cycle time

When designing an injection mould, the type, size and location of the gate is one of the most important consideration for correct moulding of the part. Incorrect gate position can result in uneven filling, over packing, and dimensional instability.

Available gate types include:

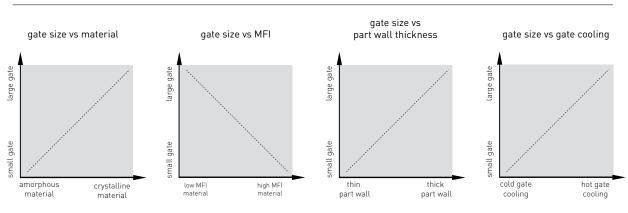
- Direct gating
- Valve gating

Direct gating is the most common gate type as it offers simple construction and reliability.

→ Refer to the Nozzle Section for more information about Gate Types

Gate Size

The correct gate size ensures a good thermal gate is achieved and minimises the pressure drop across the gate while maintaining its structural integrity. Parts with very thin wall sections or very long flow lengths need a larger nozzle and gate to achieve proper filling, this may require increasing the nozzle by one to two series.


The gate sizes effects the:

- · Flow rate
- · Pressure drop through the system
- · Cycle time
- · Thermal gate shut off after filling
- · Cosmetic impact of the gate on the part
- Cooling in the gate area

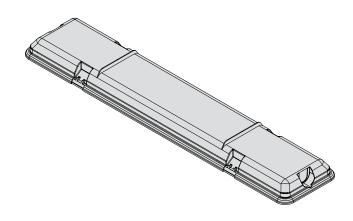
The gate size is dependent on the:

- Material
- Material viscosity
- · Part wall thickness
- · Gate cooling*
- * Gate cooling is a complex variable and consideration must also be given to cycle time, gate profile, and land length.

Gate Size Variables

Working Example of a System Selection

To calculate the number and size of nozzles required to fill a part an initial estimate of the number of nozzles or injection points must be made. A good starting point is to limit the flow length / part thickness (L/t) ratio to the typical values for that type of material. \rightarrow Refer table on page 12 - Typical Flow Length Ratios.


1	Part Details		
	Description	Fluorescent Light Base	
	Overall Size	700 x 150 x 40 mm	
	Wall thickness (t)	1.5mm	
	Part Volume (V)	220ml	

3	Hot Runner System Initial Estimates		
1	Number of Nozzles (N)	4	
	L/t	87.5 with 4 Nozzles	

2	Material		
	Туре	ABS	
	Grade	Cycolac T-XS 30001	
	Flame retardant	Yes	
	Specific Gravity (SG)	1.3	
I	_/t for wall thickness	96	
	Material Category	Medium - due to flame retardant move up one grade to difficult.	

4	Hot Runner System Analysis Results		
	Injection Pressure	93.65MPa	
	Injection Time (T)	1.36	
	Total Flow Rate (F)	(V*SG)/T=(220*1.3)/1.36=210g/s	
F	low Rate per Nozzle	(F/N)=210/4=52.5g/s	

Part Model - Fluorescent Light Base

Nozzle Series Selection

19 Series Nozzle is best suited due to the required flow rate of 52.5 g/sec. and the ABS material fitting the medium to difficult material category.

Meticom TC5100 / TC5200 Temperature Control System

METICOM TC5100 / TC5200 FEATURES

Features

- TC5100 accommodates 12 to 36 zones
- TC5200 has 26 to 72 zones and can accommodate up to 120 zones in a network
- The modularized design allows for easy maintenance and configuration

Benefits

- Soft Start function to protect heaters during startup
- Idle mode after power failure, to protect hot runner system and mold
- Self test on startup
- · CE certified
- Easy to use touch screen interface
- Mould and module diagnostics
- · Quick multi-zone setup
- Power usage display
- Synchronous heating and cooling
- Automatic heater and thermocouple detection and monitoring

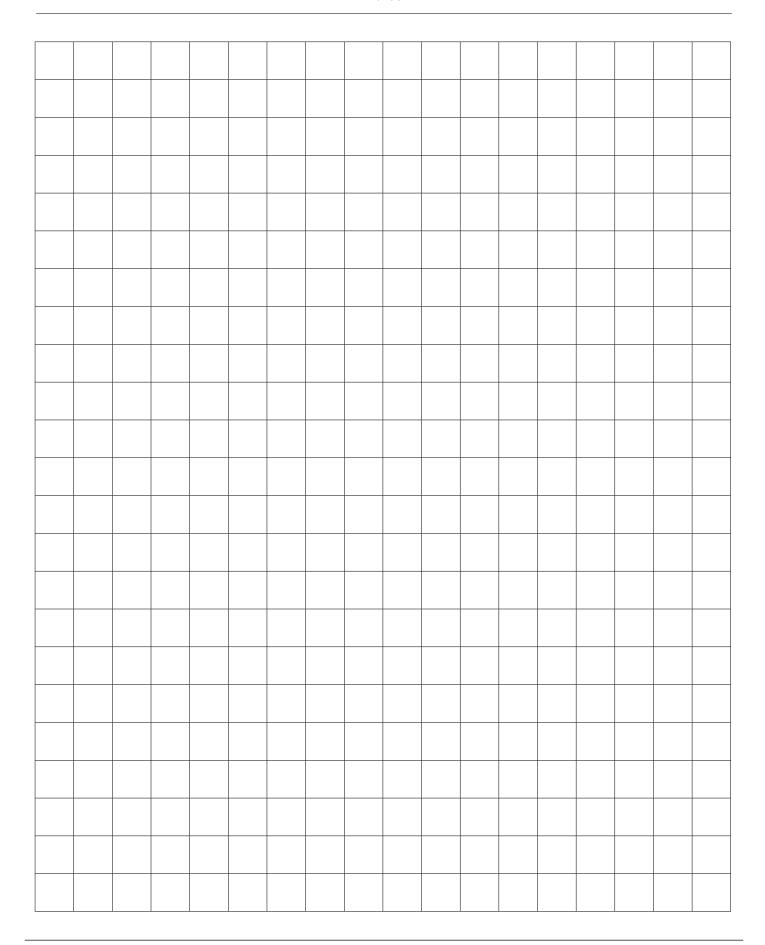
Meticom TC5H Temperature Control System

METICOM TC5H FEATURES

- Blown Fuse
- Display function of current and output ratio
- Smart SOFT START function
- Auto/Manual Selection function
- PID Automatic Temperature Control
- Output percentage limit setting
- LCD display module
- One-key start (stop)/standby (boost) function
- · Built-in alert alarm
- CE Certified
- · Over-voltage protection
- · Heater short-circuit protection
- Automatic detection of wire breakage of heater
- TRIAC short-circuit protection
- Detection for reverse troubleshooting sensor wiring temperatures

ТС5Н	2 Zones	4 Zones	6 Zones	8 Zones	12 Zones
Туре	T5B02	T5B04	T5B06	T5B08	T5B12
Power Switch Capacity (A)	32	32	63	63	63
Output Connector	16 pins x 1	16 pins x 1	16 pins x 2	16 pins x 2	24 pins x 2
Power Cable	5.5mm ² x 5C x 3M	5.5mm ² x 5C x 3M	8mm ² x 5C x 3M	8mm² x 5C x 3M	8mm² x 5C x 3M
Easy Input Switching	Yes	Yes	Yes	Yes	Yes
Dimension W x H x D (mm)	179 x 204 x 329	281 x 204 x 329	383 x 204 x 329	485 x 204 x 329	587 x 204 x 329

G-Series GTV8 Integrated Sequential Controller


GTV8 FEATURES

- Regulation of the injection quantity from each individual gate
- Quality of the moulded part can be improved by removing or repositioning of weld lines
- Injection is performed with minimum clamping force due to the gates not all opening simultaneously
- Optimum control over part fill
- · Pneumatic only
- Standard GTV8 cabinet configurations are 8 zones compact design

Technical Specifications					
Mains input power	Single phase AC 220V (50/60 Hz)				
Injection signal input power supply	24VDC, 220VAC				
Solenoid output power supply	Signal voltage, 100mA/Zone				
Operating temperature range	-10 °C to 50 °C				
Operating modes	Two modes (Continuous Sequence and Intermittent Sequence)				
Timer Increment	0.1 seconds				
Timer Range	0 - 999 seconds				
Automatic input voltage	Yes				
Manual override	Yes				

Notes

Mastip Head Office New Zealand

Physical Address 558 Rosebank Road, Avondale Auckland 1026, New Zealand

Postal Address PO Box 90651, Victoria St West Auckland 1142, New Zealand

Phone: +64 9 970 2100 Email: mastip@mastip.com

Mastip Regional Office Europe Phone: +33 0 809 400 076 Email: europe@mastip.com

Mastip Regional Office North America Phone: +1 262 644 9400

Email: northamerica@mastip.com

Mastip Regional Office China

Email: china@mastip.com

For a full list of Distributors, please visit www.mastip.com