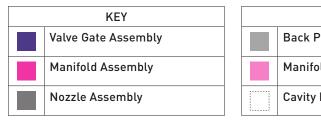
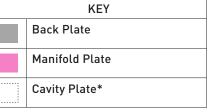
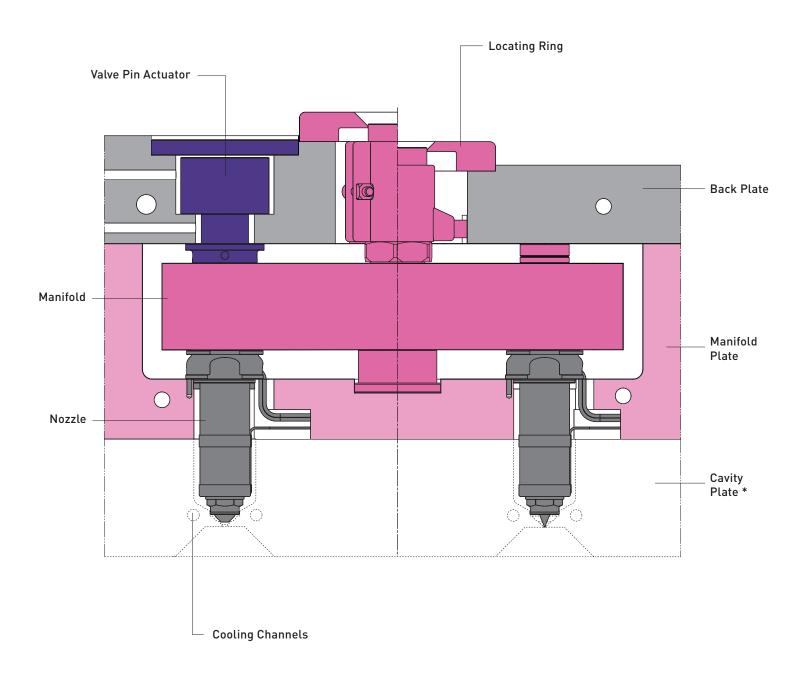


System Selection Guide


Your Complete Hot Runner Configuration Guide



|--|


Contents	pg
Standard Hot Runner Configuration	4
Hot Runner System Overview	5
Nozzle Range and Series Options	6
Tip and Nut Options	7
Selection Overview	8
Nozzle Range Selection	9
Nozzle Series Selection	10
Typical Flow Length Ratios	11
Nozzle Flow Rates	11
Tip Grade Selection	12
Plastic Material and Tip Suitability	13
Tip Style Selection	14
Tip Styles	15
Nut Type Selection	16
Nut Options	17
Gate Geometry Selection	18
MX Nozzle	20
BX Nozzle	22
SX Nozzle	24
Gating Options - MX/BX/SX	26
MJ Nozzle	28
Gating Options - MJ	29
SVG Valve Gate System	30
MVG25 Valve Gate System	32
MVG40 Valve Gate System	34
MVG55 Valve Gate System	36
MVCH Valve Gate System	38
Manifold Configuration	40
Selecting a Manifold Configuration	41
Additional Considerations	42
MMA15 Temperature Control Module	44
i-Series iB6 and iB12 Integrated Temperature Controller	45
G-Series GV24 Modular Sequential Control System	46
System Selection Example	47

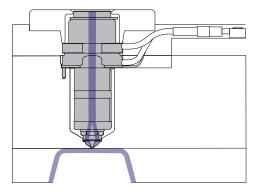
Standard Hot Runner Configuration

*Supplied by Customer

Hot Runner System Overview

A Hot Runner System maintains a molten flow of plastic from the moulding machine nozzle to the gate of a plastic injection mould.

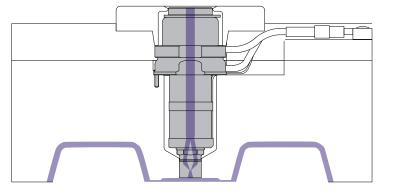
Mastip Hot Runner System Benefits


- Efficient cycle times
- Improves part consistency and quality
- Minimised gate vestige
- Reduced injection pressure
- Valve gates implement sequential filling and allow family part moulds
- Eliminates the cold runner that would be scrap or require re-grind
- Increased process control for fine tuning of mould and part

Hot Runner System Critical Areas of Performance

Manifold design considerations:

- Precise temperature control of the molten plastic
- Balanced flow to all cavities for even part filling
- Nozzle sizing for maintaining sufficient molten material flow
- Gate detail required to correctly fill the part and shut the gate
- No material traps or areas of flow hesitation to ensure quick colour change and prevent material degradation
- Minimum pressure drop across the Hot Runner System
- Reasonable melt residence time
- Maximum cooling of gate areas to ensure effective shut off to gates


Fully Hot Versus Semi Hot Configuration

Single Nozzle Gating Directly onto Part

Fully Hot advantages:

- No material wastage
- Low cycle times
- Low part stress

Single Nozzle Gating into a Cold Runner

Semi Hot advantages:

- Reduces cold runner weight
- Reduces cost of mould
- Suitable for difficult gate locations

Nozzle	Range	&	Series	Options
--------	-------	---	--------	---------

System Selection Guide

Nozzle Range and Series Options

Key	Suitability

- ✓ Available / Suitable
- Application dependant
- × Not available / Not suitable

Nozzle	e Range			Noz	zle Se	eries		Valve Gate	Front Loading	Single Nozzle
MJ		Front loading heater for Hot Half use Confined gate area Close cavity pitching	<u>0</u> 9 ✓	13 ×	16 ×	19 ×	27 ×	×	×	×
MX		Front loading heater for Hot Half use Close cavity pitching	×	~	×	~	×	V	×	×
BX		Cost effective solution Special length nozzles available Robust heater design Limited single nozzle use	×	~	~	~	~	V	×	O
SX		Dedicated single nozzle solution Two heaters for optimum control	×	~	~	~	~	×	×	~

Tip and Nut Options

Tip and Nut Option	K ey	Tip Suitability
	5 √	Available
1 Not available in X13	****	Highest rating
2 Not available in X27	×	Not Available

			Grades			Nut Style Features		tures	Plasti	c (Refer to pa	age 13)	
	TIPS	G1	G2	G5	ONT	BN BE	SN SX / SL	Gate Quality	Flow Rate	Easy	Medium	Difficult
	TT Multi Hole Torpedo Tip	✓	~	~				***	**	****	****	****
	TT+5 Extended Torpedo Tip	~	~	×	2	×	×	***	**	****	**	×
е	TT+10 Extended Torpedo Tip	✓	~	×		×	×	***	*	****	*	×
Thermal Gate	IT Single Hole Torpedo Tip	✓	~	~				***	**	****	****	***
Ţ	IT+5 Extended Torpedo Tip	✓	~	×	2	×	×	***	**	****	**	×
	IT+10 Extended Torpedo Tip	~	~	×		×	×	***	*	****	*	×
	OT Open Tip	✓	×	~				**	***	****	***	*
Gate	TV Torpedo Tip	~	×	×	1	1	1	****	****	****	***	*
Valve Gate	OV Open Tip	✓	×	~		1	1	****	****	****	***	*

Selection Overview

The easiest way to select the correct hot runner system is to follow the eight steps below.

Part Specification		Value		Unit
Part Description				
Part Weight				g
Cold runner weight (if applicable)				g
Overall size of part L x W x H				mm
Nominal Wall Thickness				mm
Minimum Wall Thickness				mm
Gate Requirements	Value	Material Specifications	Value	;
Cosmetic?	Y / N	Material Type		
Flat or recessed gate for label / printing?	Y / N	Filler or Glass Fibre %		
Mould Specifications	Value	Manufacturer and grade OR		
Number of Cavities?		MFI - Value, Temperature &		
Hot Half Construction?	Y/N	load		

TWO

Using the flow chart "Nozzle Range Selection" on page 9 select the required Nozzle Range.

Nozzle Range

MX / BX / SX / MJ

THREE

Using the flow chart "Nozzle Series Selection" on page 10 and the associated tables on page 11 select the appropriate nozzle series.

Nozzle Series

09 / 13 / 16 / 19 / 27

FOUR

Using the flow chart "Tip Grade Selection" on page 12 and the associated table select the appropriate tip grade.

Tip Grade

G1/G2/G5

SIX

Using the flow chart "Nut Style Selection" on page 15 and the associated tables on page 16 select the appropriate nut style.

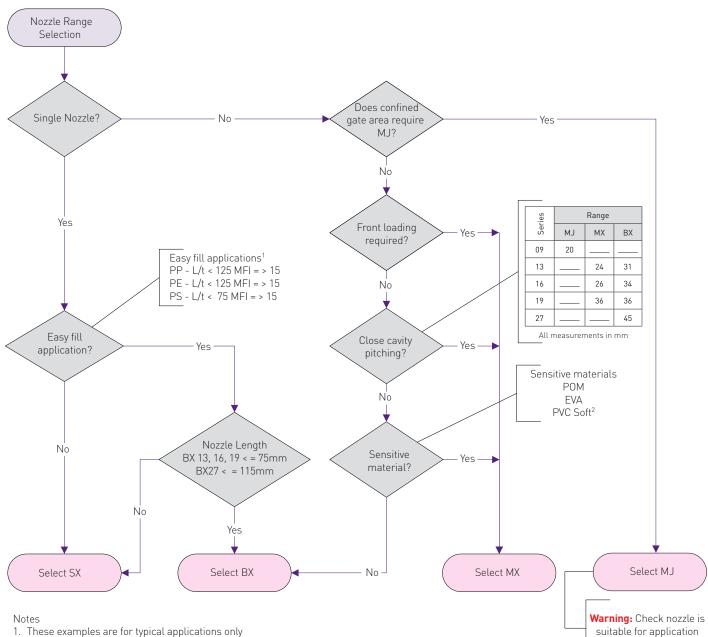
Thermal Gate						
Nut Style ONT / BN / BE / SN / SX / SL / RN / RSN						
Valve Gate						
Nut Style	ONT / VBE / VSN					

FIVE

Using the flow chart "Tip Style Selection" on page 13 and the associated table on page 14 select the appropriate tip style.

Thermal Gate					
Tip Style	TT / IT / OT				
Tip Extension (if applicable)	+5 / +10				
Valve G	Bate				
Tip Style	TV / OV				

SEVEN


Using the flow chart "Gate Geometry Selection" on page 17 select the appropriate gate geometry.								
Gate Diameter (mm)		mm						
Gate Land (0.2mm max)		mm						

EIGHT

Based on the number of cavities and/or the injection points required per part specify your manifold by attaching a drawing showing the required positions or using the L & R references as per the manifold section of the Technical Guide.

Number of nozzles on manifold

Nozzle Range Selection

Rigid PVC is not recommended for X Range

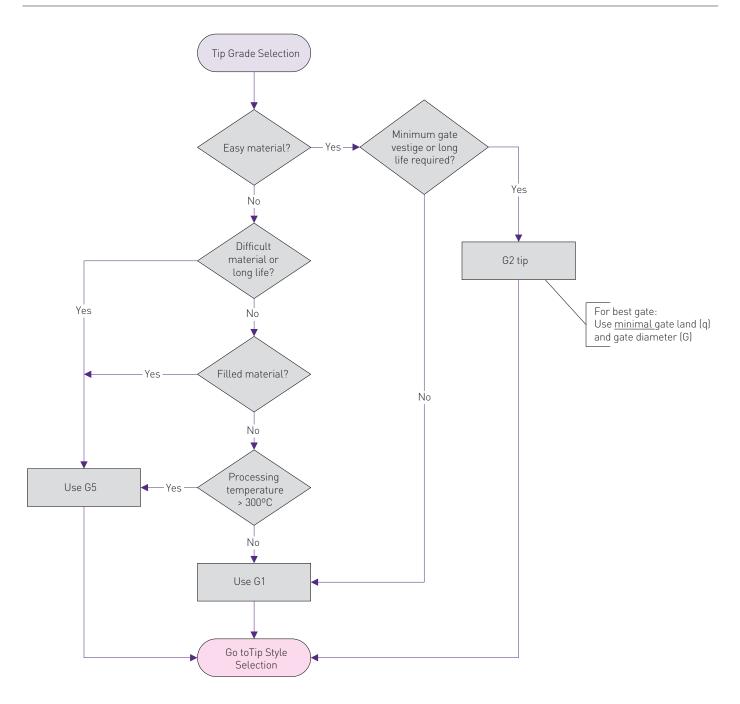
Nozzle Series Selection

	Wall Section								
Material	2.0	1.5	1.0	0.8	0.7	0.6	0.5	0.4	
ABS	170	96	43	27	21	15	11	7	
CA	150	84	38	24	18	14	9	6	
EVA	175	98	44	28	21	16	11	7	
SAN	120	68	30	19	15	11	8	5	
PA	150	84	38	24	18	14	9	6	
PC	100	56	25	16	12	9	6	4	
HDPE	225	127	56	36	28	20	14	9	
LDPE	275	155	69	44	34	25	17	11	
PMMA	130	73	33	21	16	12	8	5	
POM	150	84	38	24	18	14	9	6	
PP	250	141	63	40	31	23	16	10	
UPVC	100	56	25	16	12	9	6	4	

Typical Flow Length Ratios (L/t)

All flow lengths greater than this must be considered thin wall and the nozzle series selected accordingly.

Nozzle Flow Rates


Use the table below to select the correct nozzle series based on the flow rate required and the material category. If the material is a blend material (for example Medium-Difficult or Easy-Medium) always select the higher category to ensure the part can be filled.

Neerle Carier	Matarial Ca			Material Category	2
Nozzle Series	Material Spe	ecifications	Easy	Medium	Difficult
	Flow Rate 1	g/s	15	7	
09	Shot Weight 1	g	0.5 - 15	0.5 - 10	
	Gate Size	mm	0.6 - 1.0	0.6 - 1.0	
	Flow Rate		30	15	5
13	Shot Weight 1	g	0.5 -45	0.5 - 30	0.5 - 15
	Gate Size		0.7 - 1.4	0.7 - 1.4	0.7 - 1.4
	Flow Rate 1	g/s	125	65	25
16	Shot Weight 1	g	1 -200	1 - 125	1 - 60
	Gate Size	mm	0.8 - 1.5	0.8 - 1.5	0.8 - 1.5
	Flow Rate 1	g/s	300	150	60
19	Shot Weight 1	g	2 -625	2 - 300	2 - 150
	Gate Size	mm	1.0 - 1.8	1.0 - 1.8	1.0 - 1.8
	Flow Rate 1	g/s	600	300	125
27	Shot Weight 1	g	10 -2000	10 - 1200	10 - 800
	Gate Size	mm	1.8 - 3.0	1.8 - 3.0	1.8 - 3.0

Additives, flow length and thin wall sections all reduce the effective flow rate and shot weight. To counter the reduced flow rate and shot weight select one nozzle series larger.

2 Refer to table on Pg 13 - Plastic Material and Tip Suitability.

Tip Grade Selection

Tip Grades

Tips are manufactured in various grades designed for different applications and wear resistance.

Tip Grade	Recommended use	Manufactured Material	Tip Style Options
G1	Default grade suitable for easy materials	Beryllium Copper with Nickel coating	TT, IT, OT, TV, OV
G2	Long life tip suitable for easy unfilled materials	Beryllium Copper tipped with Steel, Nickel coating	TT,IT
G5	Long life tip suitable for difficult and	Carbide	TT, IT
00	abrasive materials	D2 Hard liner	OT, OV

1 Not available in G5

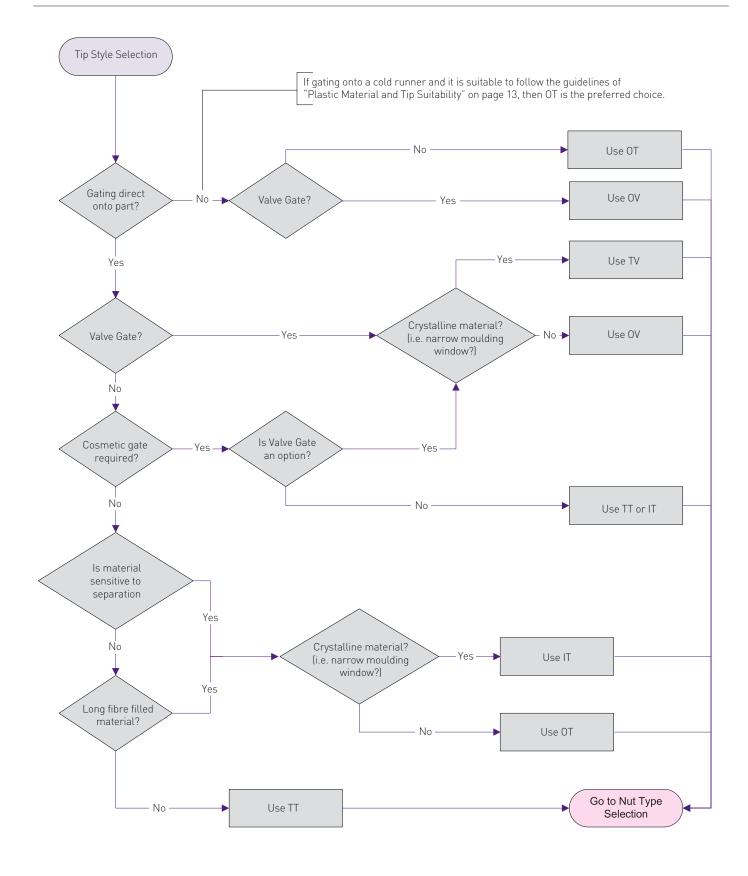
2 Only available in G2

Plastic Material and Tip Suitability

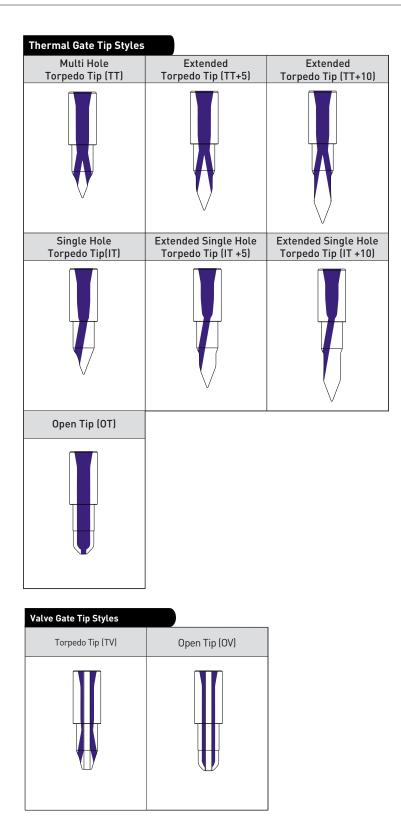
 Key
 Tip Suitability

 ✓
 Suitable

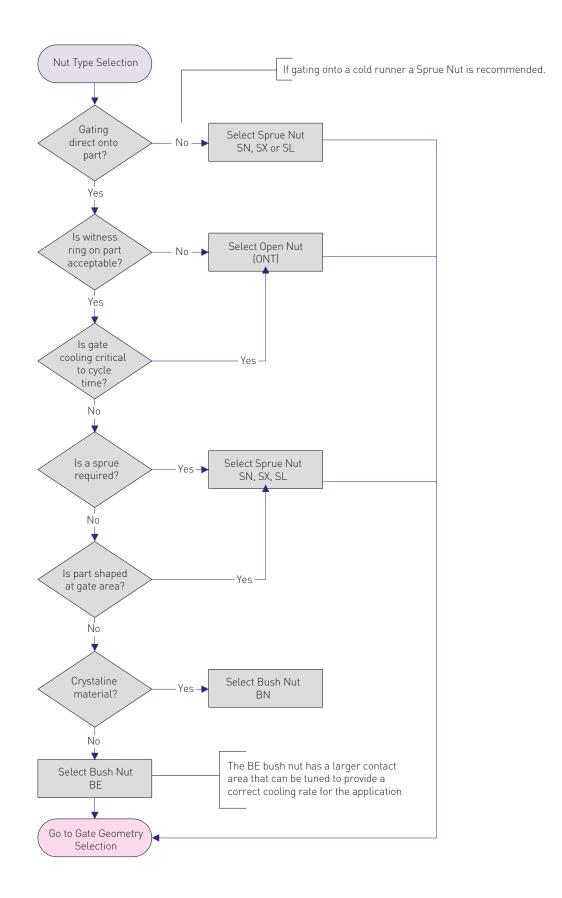
 G5
 Very suitable with Grade 5 tips only

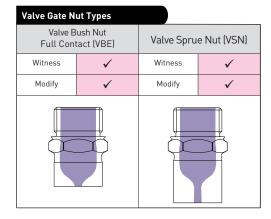

 ○
 Application dependant

 G5
 Application dependant and Grade 5 tip only


 ×
 Not suitable

N	A aterial				Nozzl	e Series ar	nd Tip			
C	ategory	09	1	3	1	6	. 1	9	2	7
		TT 1 2	TT	ОТ	тт	ОТ	TT	ОТ	тт	ОТ
			IT	ov	IT	OV	IT	ov	IT	٥V
					TV 1		TV 1		TV 1	
	PP	✓	✓	✓	✓	✓	✓	✓	✓	✓
	PE	✓	✓	✓	✓	✓	✓	✓	✓	✓
Easy	PS	✓	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark
	SB	\checkmark								
	EVA	\checkmark								
	ABS	۲	\checkmark							
	AS	۲	\checkmark							
	POM	۲	\checkmark							
Medium	SAN	\odot	\checkmark							
Med	PA6	\odot	\checkmark	×	✓	×	✓	\odot	✓	\odot
-	PMMA	\odot	\checkmark	\odot	✓	✓	✓	✓	✓	\checkmark
	ASA	\odot	\checkmark	0	✓	✓	✓	✓	✓	✓
	TPE	\odot	\checkmark	0	✓	✓	✓	✓	✓	\checkmark
	PA66	\odot	✓	×	✓	×	✓	\odot	✓	\odot
	PBT	×	✓	×	\checkmark	×	✓	\odot	✓	\odot
	PC	×	\checkmark	۲	✓	۲	✓	۲	✓	۲
	PPS	×	\checkmark	۲	✓	۲	✓	۲	✓	۲
	PPE	×	\checkmark	۲	✓	۲	✓	۲	✓	۲
	PPU	×	\checkmark	۲	✓	۲	✓	۲	✓	۲
	PET	×	\checkmark	۲	✓	۲	✓	۲	✓	۲
	PES	×	\checkmark	۲	✓	۲	✓	۲	✓	۲
	PPO	×	\checkmark	۲	✓	۲	✓	۲	✓	۲
ult	LCP	×	\checkmark	۲	✓	۲	✓	۲	✓	۲
Difficu	PEI	×	\checkmark	\odot	✓	\odot	✓	\odot	✓	\odot
Di	PP + FILL	×	G5							
	PA + FILL	×	G5							
	SAN + FILL	×	G5							
	PA66 + FILL	×	G5							
	PBT + FILL	×	G5							
	PC + FILL	×	G5							
	PPS + FILL	×	G5							
	PPE + FILL	×	G5							
	PPU + FILL	×	G5							
	PET + FILL	×	G5							
L		1								

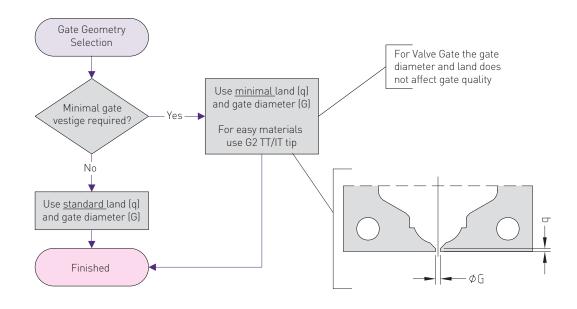

Tip Style Selection



Nut Type Selection

Nut Options

			Nut Op	otions			Key	Value			
							\checkmark	Yes			
They mel Co							×	No			
	ate Nut Types h Nut			1			Witness	Nut will l	eave a circu	lar witness m	ark on part
	tact (BE)	Bush N	ut (BN)				Modify	Nut must	be modified	d to suit applic	cation
Witness	\checkmark	Witness	\checkmark								
Modify	✓	Modify	×								
Sprue Nu	Sprue Nut +5 (SN) Sprue Nut + 20 (SX)		t + 20 (SX)	Sprue Nu	t + 35 (SL)	Retro	Sprue N	ut (SN-R)	Dome	Nut (BD)	
Witness	✓	Witness	\checkmark	Witness	\checkmark	Witn	ess	\checkmark	Witness	\checkmark	
Modify	\checkmark	Modify	\checkmark	Modify	\checkmark	Moc	lify	\checkmark	Modify	\checkmark	
									For a Dome R1, K and d at time of o		



Thermal Gate and Valve Gate Nut Types

Open N	Open Nut (ONT)		t (ONT-R)
Witness	×	Witness	×
Modify	×	Modify	✓

	Series	Standard Nut Ød4	Retro Nut Ød4
	13	10	13.1
	16	12	16.1
	19	15	19.1
⊸ Ød4 →	27	23	27.1

Gate Geometry Selection

Thermal Gate Land Length (q)

Gate land ('q') Size	Cosmetic Gate	Gate Life	Other Factors
→0.20mm	Not Recom	mended	Increased injection pressure, premature gate freeze off
0.20mm	*	****	Recommended for materials with high % filler
0.15mm	**	***	Recommended for materials with medium % filler
0.10mm	***	**	Good balance between gate cosmetics and life
0.05mm	****	*	Strong cavity steel required. Cooled inserts required near to gate
←0.05mm	Not Recommended		Sharp edge breaks on first few shots, poor wear resistance
			Limited cooling at gate can result in stringing

Recommended Thermal Gate Diameter (ØG)

Material	Tip Grade	Nozzle Series								
		09	13	16	19	27				
	G1	-	0.8 - 0.9	0.9 - 1.0	1.1 - 1.2	1.8 - 2.0				
Unfilled	G2	0.7 – 0.8	0.7 – 0.8	0.8 - 0.9	1.0 - 1.1	1.6 - 1.8				
	G5	-	0.9 – 1.0	1.0 - 1.1	1.2 - 1.3	2.0 - 2.2				
Filled	G5	-	1.0 - 1.4	1.2 – 1.5	1.5 - 1.8	2.4 - 3.0				

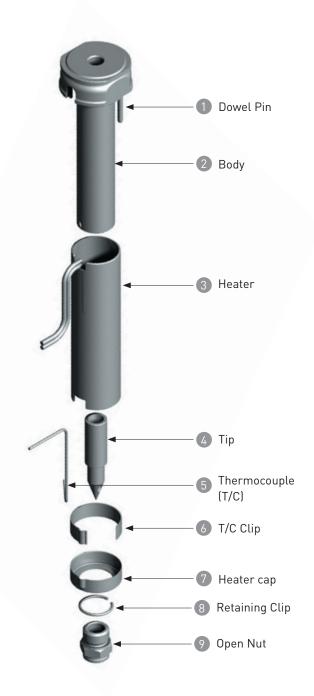
It is always recommended to start with a small gate and adjust as required.

MX Nozzle Overview

MX nozzle, specifically designed for multi cavity manifold systems and hot halves.

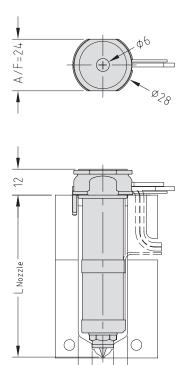
MX FEATURES

Mould design


- Efficiently designed profile to allow closer cavity pitching
- Shares the same gate profiles as BX and SX
- Available in both thermal and valve gate options
- Consistent nozzle lengths across the range
- Ability to mould large parts with smaller nozzles due to optimum flow characteristics

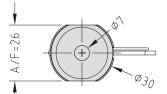
Operation

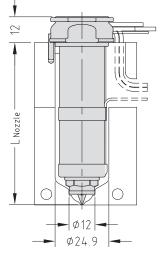
- Wide moulding window
- Excellent temperature profile and thermal stability
- Operates at low moulding pressure and temperature
- Optimum cycle times due to superior thermal insulation
- Uses an advanced micro coil heater with integrated heat deflection tube


Installation and maintenance

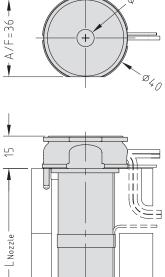
- Front loading capability for easier servicing of tips, heaters and thermocouples
- Simple machining and installation requirements
- Improved reliability due to the use of advanced materials
- Common tip and nut options provide ready availability of spare parts

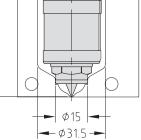
¢°


MX Nozzle Series



Ø10


Ø22.9


MX13

t

MX19

MX Standard Lengths										
Series		L _{Nozzle} *								
13 Series	45	45 55 65 75 95 115 130 145 1							175	
16 Series	45	55	65	75	95	115	130	145	175	
19 Series		<u> </u>								

* Custom lengths available on request

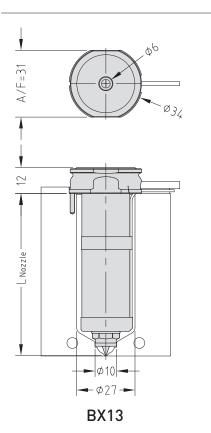
BX Nozzle Overview

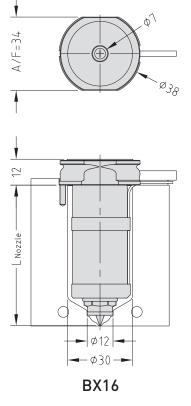
BX nozzle is designed to provide cost sensitive solutions for low to medium cavitation applications, not requiring hot half construction.

BX FEATURES

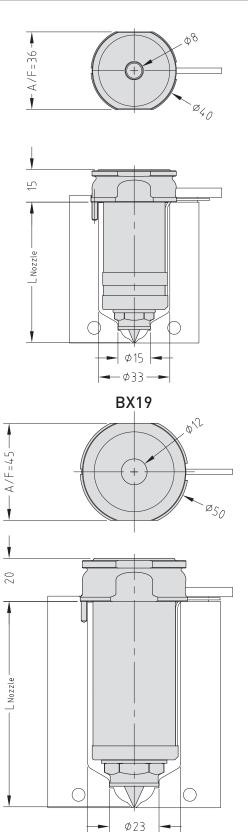
Mould Design


- Ability to easily order special length nozzles
- Shares the same gate profiles as MX and SX
- Available in both thermal and valve gate options
- Consistent nozzle lengths across the range
- Ability to mould large parts with smaller nozzles due to optimum flow characteristics


Operation


- Wide moulding window
- Excellent temperature profile and thermal stability
- Operates at low moulding pressure and temperature
- Optimum cycle times due to superior thermal insulation
- Uses an economical and robust coil heater

Installation and Maintenance


- Simple machining and installation requirements
- Improved reliability due to the use of advanced materials
- Common tip and nut options provide ready availability of spare parts

BX Nozzle Series

BX Standard Lengths										
Series		L _{Nozzle} *								
13 Series	45	55	65	75	95	115	145	175		
16 Series	45	55	65	75	95	115	145	175		
19 Series		55	65	75	95	115	145	175		
27 Series				75	95	115	145	175	225	275

* Custom lengths available on request

BX27

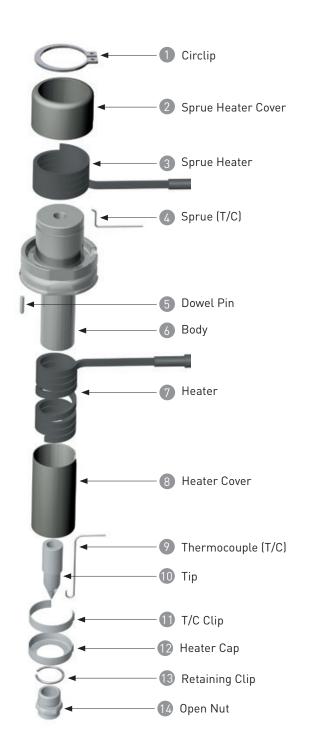
Ø43-

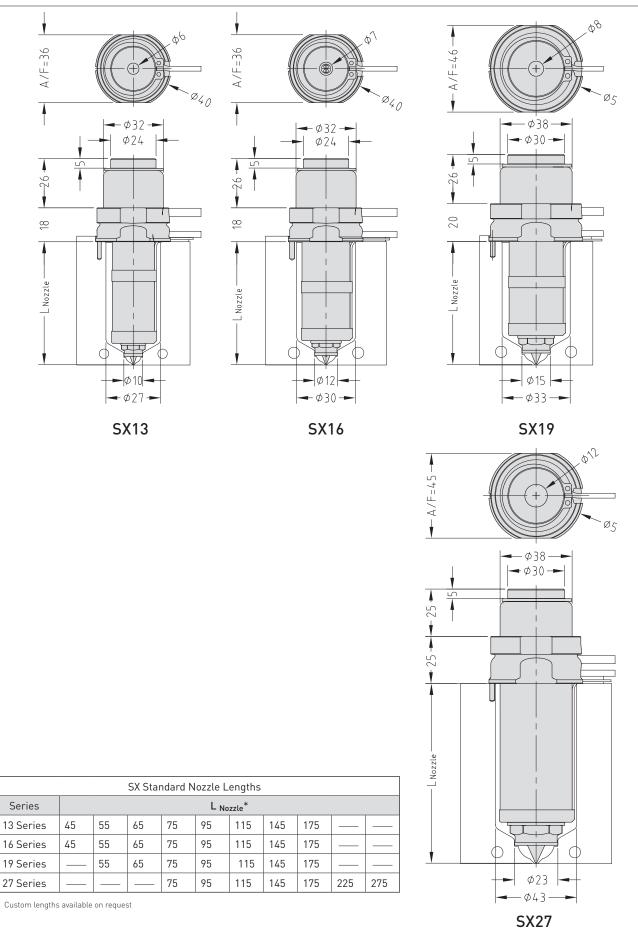
SX Nozzle Overview

With two heaters the SX nozzle is perfectly suited for all single nozzle applications.

SX FEATURES

Mould Design

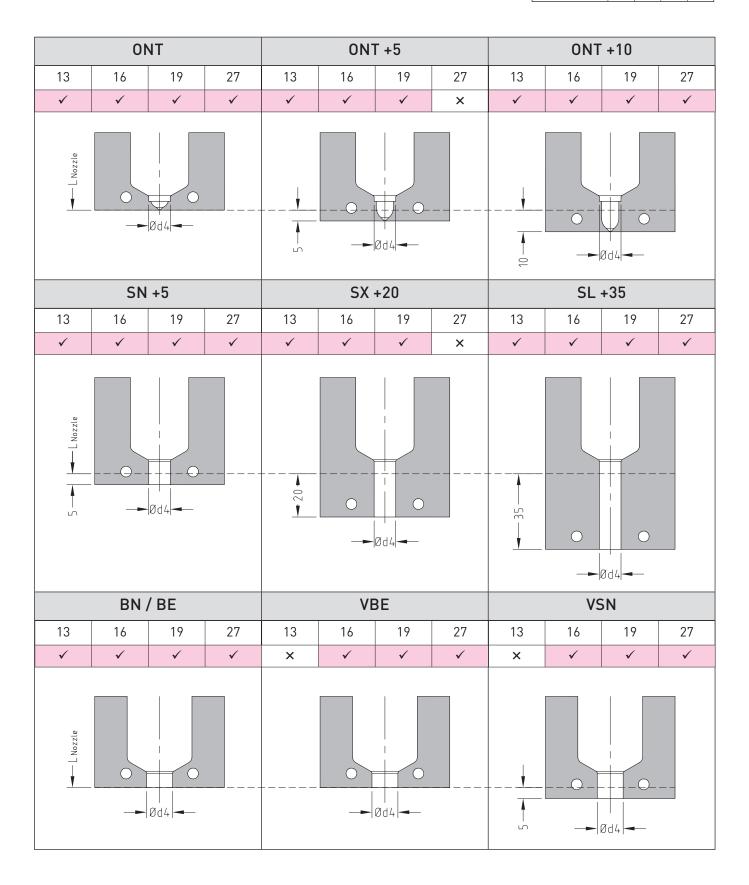

- Ability to easily order special length nozzles
- Shares the same gate profiles as MX and BX
- Consistent nozzle lengths across the range
- Ability to mould large parts with smaller nozzles due to optimum flow characteristics


Operation

- Separate heater for the nozzle head for maximum temperature control
- Wide moulding window
- Excellent temperature profile and thermal stability
- Operates at low moulding pressure and temperature
- Optimum cycle times due to superior thermal insulation
- Uses economical and robust coil heaters

Installation and Maintenance

- Simple machining and installation requirements
- Improved reliability due to the use of advanced materialsCommon tip and nut options provide ready availability of
- Common tip and nut options provide ready availability of spare parts


SX Nozzle Series

Gating Options - MX / BX / SX

System Selection Guide

Gating Options - MX / BX / SX

Standard Sealing Diameter						
Series 13 16 19 27						
Ød4	10	12	15	23		

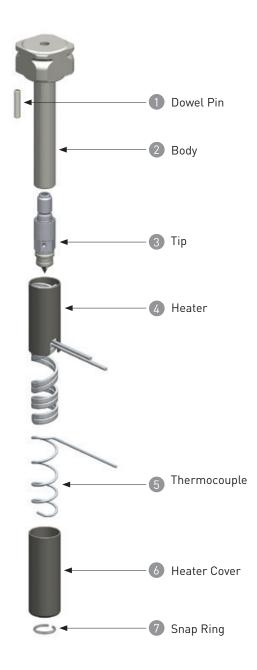
_

MJ Nozzle Overview

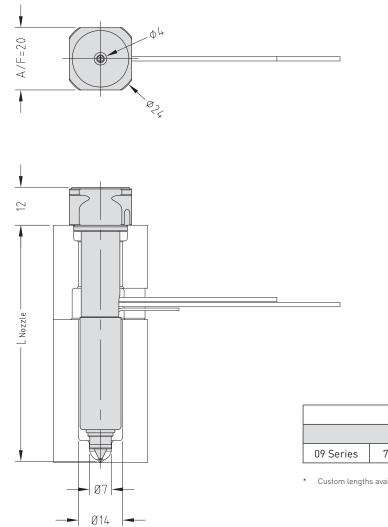
MJ nozzle, specifically designed for close cavity pitching

MJ FEATURES

Mould design

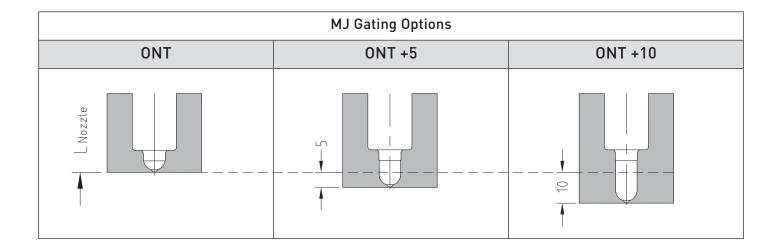

- Nozzle pocket profile for improved cooling performance and gate strength
- Optimal flow characteristics for ease of moulding
- Close cavity pitching

Operation


- Wide moulding window
- Excellent temperature profile and thermal stability
- Operates at low moulding pressure and temperature
- Short cycle times

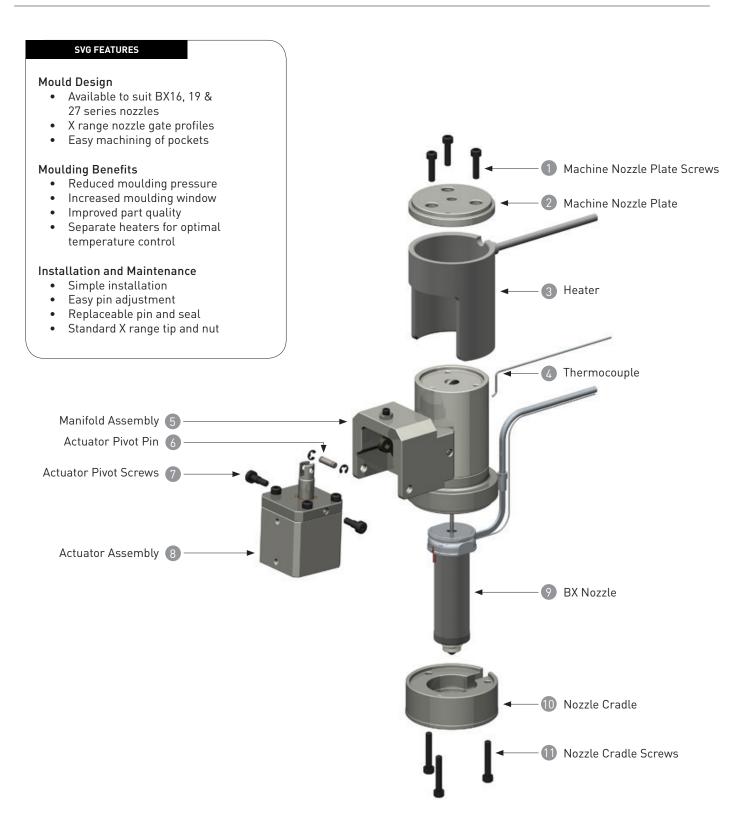
Installation and maintenance

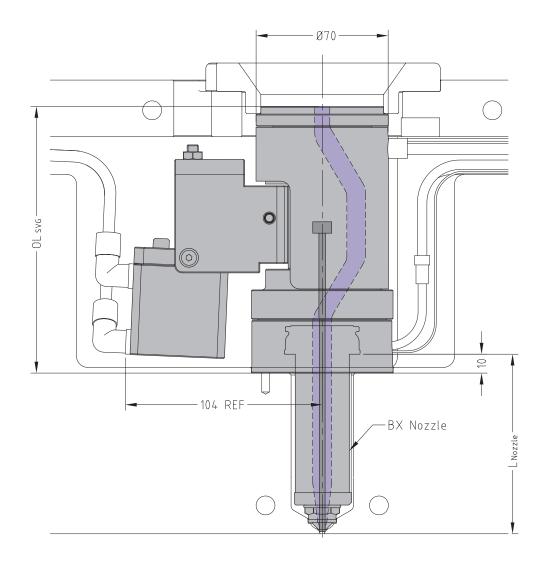
- Simple installation
- Front loading for ease of servicing
- Improved reliability



MJ Nozzle Series

MJ Standard Lengths						
L _{Nozzle} *						
09 Series	75	95	115	130	145	175


* Custom lengths available on request


SVG Valve Gate System

System Selection Guide

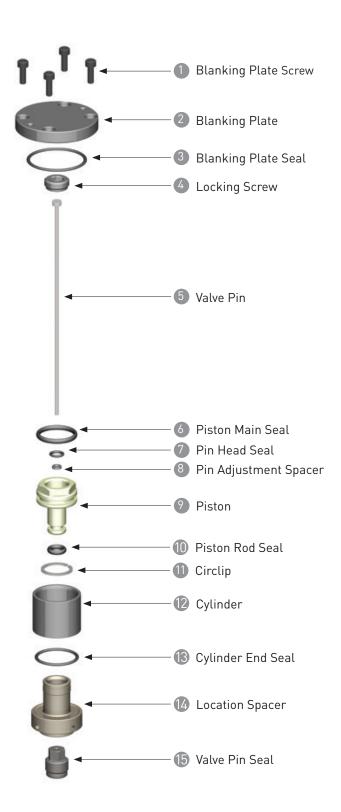
SVG Valve Gate System

SVG Valve Gate System

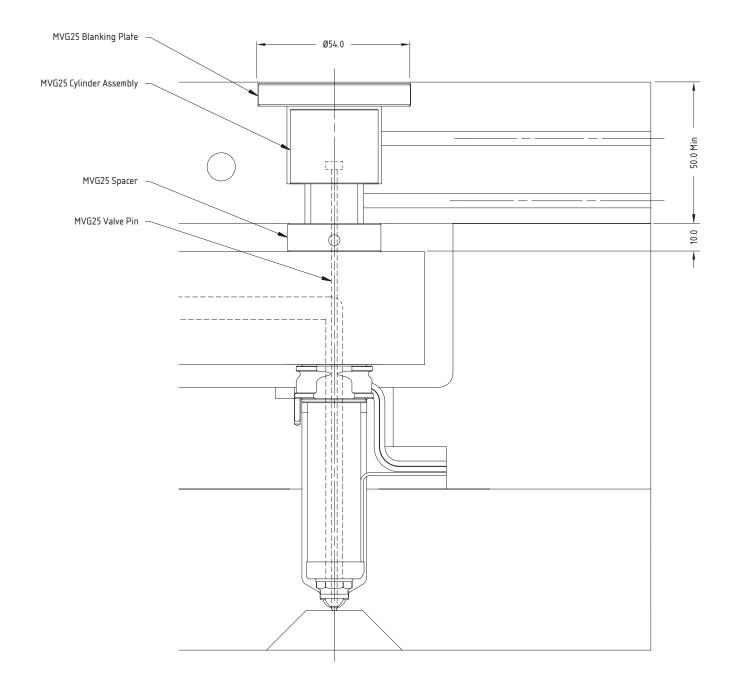
SVG Nozzle Compatibility							
Description	OL svg	Тір	Supplied Pin Size	Nozzle	L _{Nozzle}		
SVG 33 - 2.5	138	OV / TV	Ø2.5	BX16	55 - 145		
SVG 33 - 3.0	141	OV / TV	Ø3.0	BX19	55 - 145		
SVG 33 - 5.0	146	OV / TV	Ø5.0	BX27	75 - 145		

MVG25 Valve Gate System

Mould Design


- Available to suit MX and BX Nozzles
- Standard minimal pitching is 55mm can be modified to fit 43mm
- Backplates 50mm minimum
- Conical or Cylindrical shut off
- Easy machining of the pockets
- Pneumatic circuit integrated with the backplate

Moulding Benefits


- Reduced moulding pressure
- Increased moulding window
- Lower mould filling stress results in better part quality
- Reduced gate cooling requirements

Installation and Maintenance

- Easy machining and installation
- Easy seal replacement

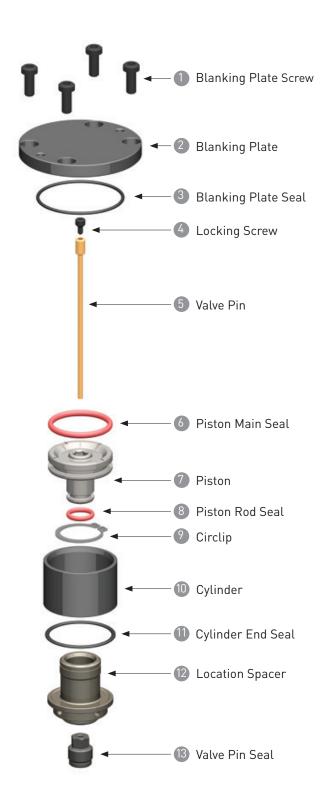
MVG25 Valve Gate System

MVG25 Nozzle Compatibility						
Description	Nozzle	Tip	Nozzle Length	Supplied Pin Size		
MVG25 – 2.0	MX13 / BX13	OV	45 – 175	Ø2.0		
MVG25 – 2.5	MX16 / BX16	OV / TV	45 - 175	Ø2.5		

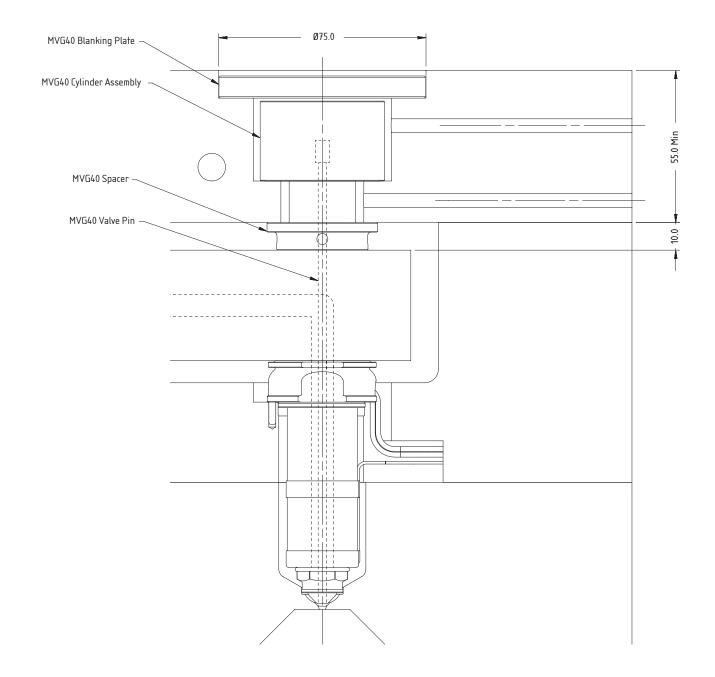
MVG40 Valve Gate System

MVG40 FEATURES

Mould Design

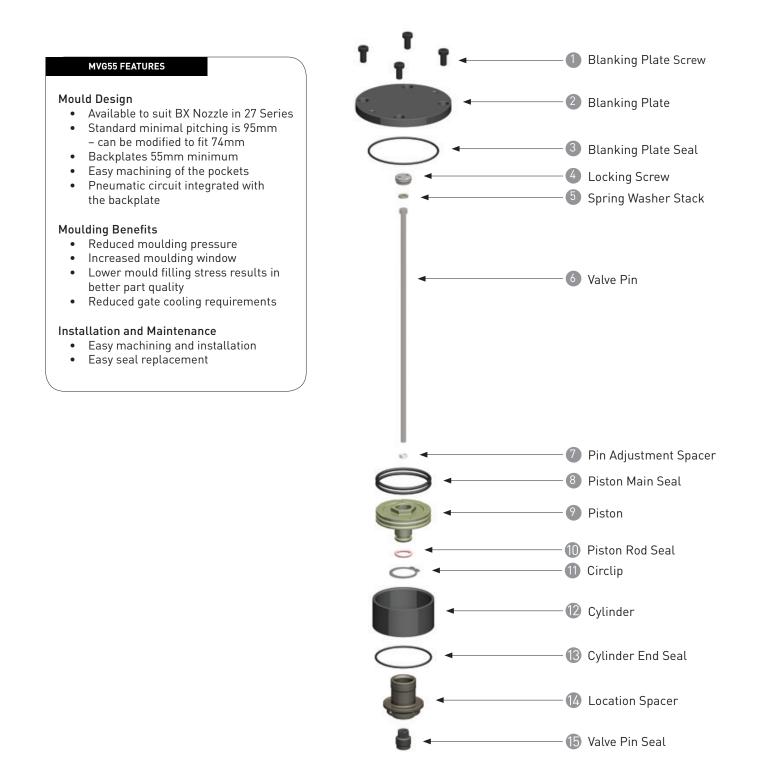

- Available to suit MX and BX Nozzles
- Standard minimal pitching is 75mm
- can be modified to fit 58mm pitching
- Backplates 55mm minimum
- Conical or Cylindrical shut off
- Easy machining of the pockets
- Pneumatic circuit integrated with the backplate

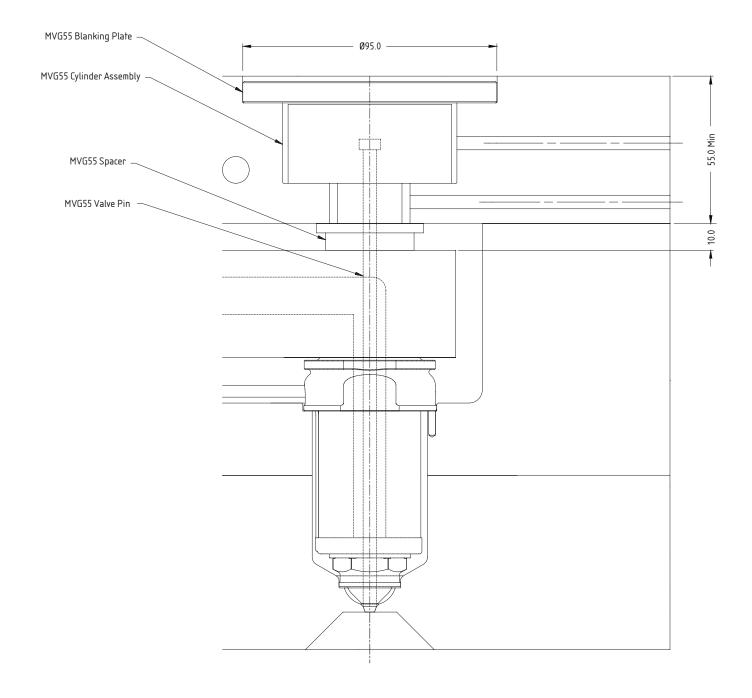
Moulding Benefits


- Reduced moulding pressure
- Increased moulding window
- Lower mould filling stress results in better part quality
- Reduced gate cooling requirements

Installation and Maintenance

- Easy machining and installation
- Easy pin adjustment and seal replacement while the mould remains assembled


MVG40 Valve Gate System


MVG40 Nozzle Compatibility							
Description	Nozzle	Tip	Nozzle Length	Supplied Pin Size			
MVG40 - 2.0	MX13 / BX13	OV	45 - 145	Ø2.0			
MVG40 - 2.5	MX16 / BX16	OV / TV	45 - 145	Ø2.5			
MVG40 - 3.0	MX19 / BX19	OV / TV	55 - 175	Ø3.0			
MVG40 - 5.0	BX27	OV / TV	75 - 275	Ø5.0			

* Custom lengths available on request

MVG55 Valve Gate System

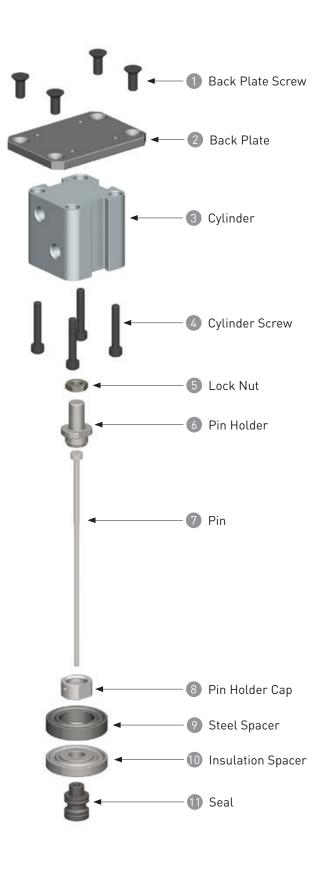
MVG55 Valve Gate System

MVG55 Nozzle Compatibility				
Description	Nozzle	Tip	Nozzle Length	Supplied Pin Size
MVG55 – 5.0	BX27	OV / TV	75 – 275	Ø5.0

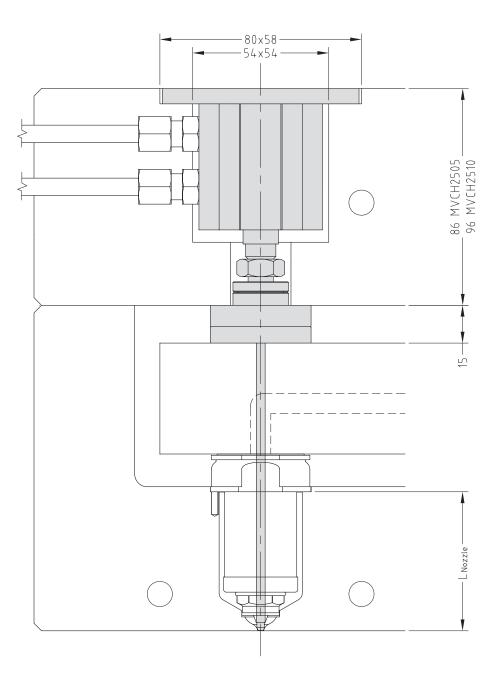
MVCH Valve Gate System

MVCH FEATURES

Mould Design


- Available to suit MX 16, 19 and BX 16, 19 and 27 series
- Standard minimal pitching is 58mm
- Backplates 86mm minimum
- Easy machining of pockets
- Hydraulic actuation

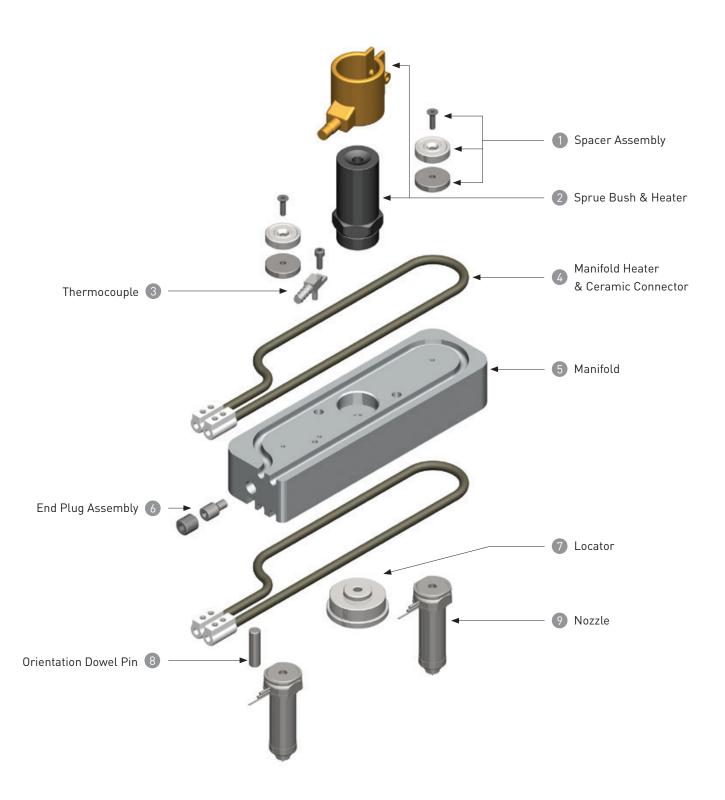
Moulding Benefits


- Improved part quality
- Reduced moulding pressure
- Increased moulding window
- Lower mould filling stress results in better part quality
- Reduced gate cooling requirements

Installation and Maintenance

• Adjustable pin length

MVCH Valve Gate System



MVCH Nozzle Compatibility					
Description	Stroke	Тір	Supplied Pin Size	Nozzle	L _{Nozzle}
MVCH2505-2.5	5	TV	Ø2.5		/ 5 115
MVCH2510-2.5	10	OV	Ø2.5	MX16 / BX16	45 - 115
MVCH2505-3	5	ΤV	Ø3.0	MX19 / BX19	/ 5 115
MVCH2510-3	10	OV	Ø3.0	MAI9/ BAI9	45 - 115
MVCH2505-5	5	ΤV	Ø5.0	DV07	75 005
MVCH2510-5	10	OV	ພ່ວ.ບ	BX27	75 - 225

* Custom lengths available on request

Manifold Configuration

Exploded view of a Standard 2 Drop Hot Runner System

Selecting a Manifold Configuration

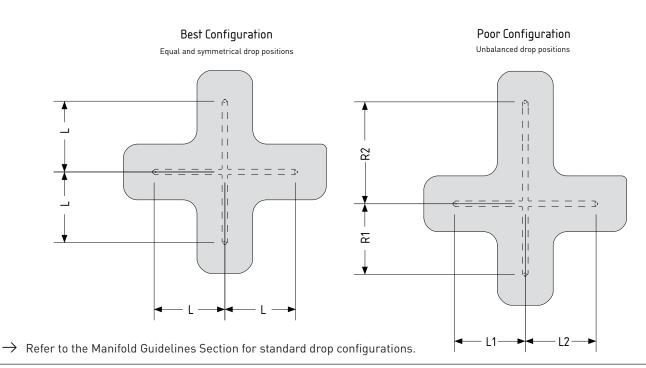
When deciding on a manifold layout it is important to consider the following:

- The number of injection points required per cavity
- The number of cavities in the mould
- Minimum distance between nozzles
- Balancing of the manifold
- Spacing of cavities to provide adequate room for cooling
- Gate and cavity
- Strength of the mould
- Sufficient steel between cavities
- Mould size versus machine platen size
- Total shot weight

For multi-cavity moulds balancing is critical to achieve consistent dimensions, cosmetic appearance and processing conditions across cavities. It is therefore strongly recommended that for multi-cavity moulds a manifold layout providing natural balancing is used.

Natural Balancing: In order to achieve natural balance, the material must flow through identical geometry from the machine nozzle to each of the gates.

This means identical:


- Flow distance
- Runner diameters
- Number and angle of bends

This ensures that every gate receives material in exactly the same condition. With natural balance, the balance is inherent in the design, and is not based on a specific material or processing temperature.

Rheological balancing: Is a method of balancing by using different runner sizes to artificially provide identical pressure drop at each gate. To accurately predict this, the flow properties of the material must be known, along with the flow rate and anticipated processing temperature. Any variation from the processing conditions used during design will result in an unbalanced system.

Some drop configurations can not be naturally balanced unless the drops are on a PCD and must therefore be rheologically balanced. E.g. 3, 5, 7, 9, 10, 11, 13, 14, 15, 17-23 etc

All standard Mastip manifolds (except 3 Drop 3x1) are naturally balanced.

Additional Considerations

To select a Hot Runner System to match your part and material specifications consideration

- must be given to the following:Gate type
 - Gate type
 Gate size
 - Nozzle range and series
 - Nozzle tip style
 - Nozzle nut type

Selecting Material

There are three broad categories of materials each relating to its moulding characteristics:

- Easy
- Medium
- Difficult

When selecting material consider the following:

• Materials with large percentages of filler (for example, →15%) or very low MFI, the material classification moves up a grade (for example, easy to medium).

Selecting a Gate Type

Thickness of part walls

Required cycle time

Longest flow length of part

The following factors must be considered when selecting a gate type:

- Shot size of part
- Material to be moulded
- Material
- Viscosity
- Additives
- Glass fibre
- Flame retardant
- Gate surface finish

When designing an injection mould, the type, size and location of the gate is one of the most important consideration for correct moulding of the part. Incorrect gate position can result in uneven filling, over packing, and dimensional instability.

Available gate types include:

- Direct gating
- Side gating
- Edge gating
- Valve gating

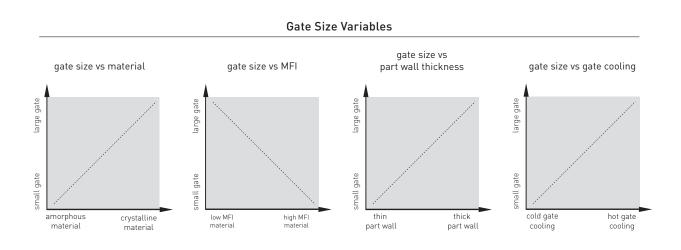
Direct gating is the most common gate type as it offers simple construction and reliability.

•

ightarrow Refer to the Nozzle Section for more information about Gate Types

Gate Size

The correct gate size ensures a good thermal gate is achieved and minimises the pressure drop across the gate while maintaining its structural integrity. Parts with very thin wall sections or very long flow lengths need a larger nozzle and gate to achieve proper filling, this may require increasing the nozzle by one to two series.


The gate sizes effects the:

- Flow rate
- Pressure drop through the system
- Cycle time
- Thermal gate shut off after filling
- Cosmetic impact of the gate on the part
- Cooling in the gate area

The gate size is dependent on the:

- Material
- Material viscosity
- Part wall thickness
- Gate cooling*

* Gate cooling is a complex variable and consideration must also be given to cycle time, gate profile, and land length.

MMA15 Modular Temperature Controller

MMA15 FEATURES

Benefits

- Soft Start function to protect heaters during startup
- Idle mode after power failure, to protect module and Hot Runner System
- Open Thermocouple and reversed Thermocouple detection
- Self test on startup

Single Zone Temperature Controller (MSA)

- Uses standard MMA15 modules
 Supplied with 3m cable and mould end connectors
- 10A rating

Multi Zone Temperature Controller (MMA)

- Standard MMA cabinet configurations
- are 1 to 12 zonesSupplied with 3m cables and mould end connectors
- 15A rating on all zones

Technical Specifications		
Mains input power	240Vac / 50-60 Hz	
Output current capability	MMA=15A MSA=10A	
Thermocouple	"J" and "K" type, selectable by DIP switch	
User interface: output	SV and PV LED	
Temperature control range	0°C to 537°C (32°F to 999°F)	
Temperature control accuracy	±1°C	
Thermocouple open detect	Yes	
Thermocouple reversed detect	Yes	
Start up self test	Yes	
Standby Mode	Yes, selectable by DIP switch	
Auto tune	Once or every time (user selectable)	

i-Series iB6 and iB12 Integrated Temperature Controllers

	IB6/IB12 FEATURES			
Feat	ures			
•	iB6 - 1 to 6 zones			
•	iB12 - 1 to 12 zones			
	Supplied with 3m cabl			

• Supplied with 3m cables and mould end connectors

Benefits

- CE Compliant
- Compact package design
- Improved temperature control
- Soft start function
- Heater short detection
- Open thermocouple and reversed thermocouple detection
- 'Boost' mode for temporary power output increase
- Remote input standby function

Bé transpor	mastip [.]	
B12 ^{theorem}		stip [.]

Technical Specifications		
Mains input power	100 – 240Vac	
Output current capability	15A	
Thermocouple	"J" and "K" type, grounded or ungrounded	
User interface: output	SP and PV LED	
Temperature control range	0°C to 537°C (32°F to 999°F)	
Temperature control accuracy	±1°C	
Thermocouple open detect	Yes	
Thermocouple reversed detect	Yes	

G-Series GV24 Modular Sequential Control System

GV24 FEATURES

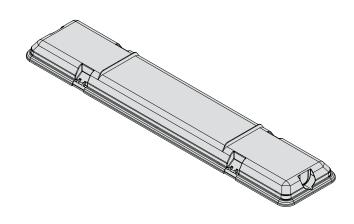
Benefits

- Regulation of the injection quantity from each individual gate
- Quality of the moulded part can be improved by removing or repositioning of weld lines
- Injection is performed with minimum clamping force due to the gates not all opening simultaneously
- Optimum control over part fill
- Standard GV24 cabinet configurations are 2 to 8 zones
- Supplied with 3m cable and mould end connectors

Technical Specifications		
Mains input power	Single phase AC 90-250V (50/60 Hz)	
Injection signal input power supply	24VDC, 110VAC, 220VAC	
Solenoid valve voltage	24VDC, 110VAC, 220VAC	
Operating temperature range	-10 °C to 50 °C	
Operating modes	Three modes (Continuous Sequence, Intermittent Sequence and Delay Sequence)	
Timer Increment	0.1 seconds	
Timer Range	0 - 999 seconds	
Start up self diagnosis	Yes	
Automatic input voltage	Yes	
Manual override	Yes	

Working Example of a System Selection

To calculate the number and size of nozzles required to fill a part an initial estimate of the number of nozzles or injection points must be made. A good starting point is to limit the flow length / part thickness (L/t) ratio to the typical values for that type of material. \rightarrow Refer table on Pg11 - Typical Flow Length Ratios.


1	Part Details	
	Description	Fluorescent Light Base
	Overall Size	700 x 150 x 40 mm
	Wall thickness (t)	1.5mm
	Part Volume (V)	220ml

3	Hot Runner System Initial Estimates	
Number of Nozzles (N)		4
	L/t	87.5 with 4 Nozzles

2 Material	
Туре	ABS
Grade	Cycolac T-XS 30001
Flame retardant	Yes
Specific Gravity (SG)	1.3
L/t for wall thickness	96
Material Category	Medium - due to flame
	retardant move up one
	grade to difficult.

4 Hot Runner	4 Hot Runner System Analysis Results	
Injection Pressure	93.65MPa	
Injection Time (T)	1.36	
Total Flow Rate (F)	(V*SG)/T=(220*1.3)/1.36=210g/s	
Flow Rate per Nozzle	(F/N)=210/4=52.5g/s	

Part Model - Fluorescent Light Base

Nozzle Series Selection

19 Series Nozzle is best suited due to the required flow rate of 52.5 g/sec. and the ABS material fitting the medium to difficult material category.

smart hot runner solutions

Mastip Head Office New Zealand

558 Rosebank Road Avondale, Auckland 1026 PO Box 90-651 Victoria Street West Auckland 1142 New Zealand Phone: +64 9 970 2100 Fax: +64 9 970 2070 Email: mastip@mastip.com

Mastip Regional Office Europe

Phone: +33 0 809 400 076 Email: europe@mastip.com

Mastip Regional Office China

Phone: +86 21 6420 6169 Email: china@mastip.com

Mastip Regional Office North America

Phone: +1 262 644 9400 Fax: +1 262 644 9402 Email: northamerica@mastip.com

