MVG40 Threaded Pin Valve Gate
IMPORTANT!

The back plate must be cooled and must not exceed 150°C.
The cylinder should be in the closed position at all times except during injection and packing.

- **Air quality:** Filtered to 40 μM and lubricated
- **Minimum air:** pressure 4 Bar
- **Maximum air:** pressure 10 Bar

Key Features

- Suitable for most materials
- Conical (1) or Cylindrical (2) shut off
- Ø2.0mm, Ø2.5mm, Ø3.0mm and Ø5.0mm pin
- Pneumatic actuation
Spacing Layout

![Spacing Layout Diagram](image-url)

figure. 2

- Cooling
- Airways
- Cooling
- Airways
- Cooling

Standard

With modified blanking plate

Dimensions:
- 80.0
- 40.0
- 40.0
- 80.0
MVG40 Threaded Pin Overall Dimensions

Note: Pins are supplied in standard length and must be cut to required length before installation.

- Pins can be supplied finished ready to use by Mastip
- Refer to page MVG40-6 Pin Calculations section to calculate required final pin lengths

<table>
<thead>
<tr>
<th>Nozzle Compatibility</th>
<th>Nozzle</th>
<th>Nozzle Length</th>
<th>Supplied Pin Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVG40-P2 Threaded Pin</td>
<td>MX13/BX13</td>
<td>45 - 145</td>
<td>Ø2.0</td>
</tr>
<tr>
<td></td>
<td>MX16/BX16</td>
<td>45 - 145</td>
<td>Ø2.5</td>
</tr>
<tr>
<td></td>
<td>MX19/BX19</td>
<td>55 - 175</td>
<td>Ø3.0</td>
</tr>
<tr>
<td></td>
<td>BX27</td>
<td>75 - 275</td>
<td>Ø5.0</td>
</tr>
</tbody>
</table>
Fitment

M6 x 1.0 (4 Places)

Cooling

Airways

M6 x 1.0 (4 Places)

figure. 4

figure. 5
Pin Details

Caution: The gap between the gate and the pin in a hot state is critical. If the gap is too large there will be a poor gate vestige and drooling from the nozzle may occur. If the gap is too small, the pin can strike the gate and may decrease the gate life.

To calculate final pin length use the following equation:

\[
\text{Pin Length} = 22.0 + 10.0 + X + L_4 + L
\]

Conical and Cylindrical Valve Gate Recommendations

<table>
<thead>
<tr>
<th></th>
<th>Conical Valve Gate</th>
<th>Cylindrical Valve Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Quality</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Pin Cooling</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>Filled Materials</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td>Material with Small Moulding Window</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td>Ease of Pin Setup</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td>Ease of Gate Manufacture</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>Gate Life</td>
<td>***</td>
<td>*</td>
</tr>
</tbody>
</table>

Key

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Lowest Rating</td>
</tr>
<tr>
<td>**</td>
<td></td>
</tr>
<tr>
<td>***</td>
<td>Highest Rating</td>
</tr>
</tbody>
</table>
Conical Valve Gate

<table>
<thead>
<tr>
<th>D</th>
<th>d1</th>
<th>d2</th>
<th>AF</th>
<th>CP</th>
<th>AT</th>
<th>qT</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>1.3</td>
<td>1.25</td>
<td>1.80</td>
<td>8</td>
<td>1.30</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>2.5</td>
<td>1.8</td>
<td>1.75</td>
<td>2.30</td>
<td>8</td>
<td>1.80</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>2.2</td>
<td>2.15</td>
<td>2.75</td>
<td>8</td>
<td>2.20</td>
<td>1.2</td>
<td>2.5</td>
</tr>
<tr>
<td>5.0</td>
<td>3.5</td>
<td>3.45</td>
<td>4.65</td>
<td>10</td>
<td>3.50</td>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

The pin will form a 0.1mm deep dimple on the part.
Pin and gate to be lapped to ensure clean shutoff.
Recommended for amorphous polymers.

Cylindrical Valve Gate

<table>
<thead>
<tr>
<th>Description</th>
<th>D</th>
<th>AP</th>
<th>BP</th>
<th>AF</th>
<th>CP</th>
<th>GP</th>
<th>qP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVG40-P2 Threaded Pin</td>
<td>2.0</td>
<td>1.292</td>
<td>2.0</td>
<td>1.6</td>
<td>5</td>
<td>1.305</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>MVG40-P2 Threaded Pin</td>
<td>2.5</td>
<td>1.792</td>
<td>2.0</td>
<td>2.1</td>
<td>5</td>
<td>1.805</td>
<td>0.7</td>
<td>2.0</td>
</tr>
<tr>
<td>MVG40-P2 Threaded Pin</td>
<td>3.0</td>
<td>2.192</td>
<td>2.0</td>
<td>2.6</td>
<td>5</td>
<td>2.205</td>
<td>0.8</td>
<td>2.5</td>
</tr>
<tr>
<td>MVG40-P2 Threaded Pin</td>
<td>5.0</td>
<td>3.492</td>
<td>2.5</td>
<td>4.4</td>
<td>8</td>
<td>3.505</td>
<td>1.3</td>
<td>3.0</td>
</tr>
</tbody>
</table>

The pin will form a 0.1mm deep dimple on the part.
Recommended for semi-crystalline and filled polymers.

Guided Cylindrical Valve Gate (GVG5) or YV2 Nut

<table>
<thead>
<tr>
<th>Description</th>
<th>D</th>
<th>AP</th>
<th>BP</th>
<th>AF</th>
<th>CP</th>
<th>DP</th>
<th>GP</th>
<th>qP</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVG40-P2 Threaded Pin</td>
<td>2.0</td>
<td>1.292</td>
<td>2.0</td>
<td>1.70</td>
<td>8</td>
<td>1.892</td>
<td>1.305</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>MVG40-P2 Threaded Pin</td>
<td>2.5</td>
<td>1.792</td>
<td>2.2</td>
<td>2.20</td>
<td>8</td>
<td>2.392</td>
<td>1.805</td>
<td>0.7</td>
<td>2.0</td>
</tr>
<tr>
<td>MVG40-P2 Threaded Pin</td>
<td>3.0</td>
<td>2.192</td>
<td>2.5</td>
<td>2.65</td>
<td>8</td>
<td>2.892</td>
<td>2.205</td>
<td>0.8</td>
<td>2.5</td>
</tr>
<tr>
<td>MVG40-P2 Threaded Pin</td>
<td>5.0</td>
<td>3.492</td>
<td>3.0</td>
<td>4.55</td>
<td>10</td>
<td>4.892</td>
<td>3.505</td>
<td>1.3</td>
<td>3.0</td>
</tr>
</tbody>
</table>

The pin will form a 0.1mm deep dimple on the part.
Recommended for semi-crystalline and filled polymers.
MVG40 Threaded Pin Valve Gate

Exploded Diagram

As Supplied

A MVG40 CYLINDER ASSEMBLY

B MVG40 VALVE PIN + SEAL

Exploded Diagram

1 Blanking Plate Screw
2 Blanking Plate
3 Blanking Plate Seal
4 Pin Locking Screw
5 Valve Pin
6 Piston Main Seal
7 Piston
8 Piston Rod Seal
9 Circlip
10 Cylinder
11 Cylinder End Seal
12 Locating Spacer
13 Valve Pin Seal
Installation and Pin Adjustment Guide

PRE INSTALLATION
1. Verify the actuator pockets and air circuits are machined in the back plate as shown in figure 5.
2. Ensure there are no sharp edges or burrs in the actuator pockets.
3. Ensure the actuator pocket and air circuits are clean.
4. Cut pins to length and profile end to conical or cylindrical form (refer nozzle approval drawing)
5. Assemble the fixed half of the mould including hot runner nozzles and manifold excluding backplate.
 → Refer to the Technical Specifications section of the Technical Guide
 Pin and seal are a matched set and must remain paired.

INSTALLATION

ONE
Ensure all components are clean

TWO
Fit the Cylinder End Seal 11 to the Cylinder 10
Apply grease* to Cylinder End Seal 11

THREE
Fit the Cylinder 10 and Locating Spacer 12 to the mould backplate and retain using the Circlip 7
Ensure Cylinder 10 is compressing Cylinder End Seal 11 to fit Circlip 7 securely in groove on Locating Spacer 12

FOUR
Apply grease* to the sealing bores of the Locating Spacer 12 and Cylinder 10 and to the pre fitted Piston Seals 6 & 8
Fit Piston 7 to the Cylinder 10

Note
* Mastip recommends using high temperature silicon grease
INSTALLATION CONT.....

FIVE

Clean any residual material from the pin seal pocket and thread in the manifold.

Apply heat resistant nickel based anti-seize to the thread of the new pin seal and screw into the manifold and tighten to 20Nm.

Ensure pins slide smoothly through the pin seal after tightening.

SIX

Centralise Cylinder Assembly \(A \) to the Actuator pocket.
Fit mould backplate to mould and fasten.

Note: If backplate location guides start to locate first, then the cylinder assembly should self locate to the manifold. However in some cases it may be necessary to move the cylinder assemblies in the actuator pocket to locate them with the manifold.
INSTALLATION CONT.....

EIGHT

Fit the Valve Pin (ensure pins are matched to seals) to Piston 7.

To adjust the pin length:
→ Go to step FOUR in the PIN ADJUSTMENT section.

or

fit the Pin Locking Screw 4 and continue to step NINE.

NINE

Fit Blanking Plate Seal 3 to Blanking Plate 2a or 2b.
INSTALLATION CONT.....

Fit Blanking Plate 2 or 3 to the mould backplate and fasten using Blanking Plate Screws 1.
PIN HEIGHT ADJUSTMENT

ONE

Make sure piston is fully forward and ensure no air is connected to the system.

TWO

Remove Blanking Plate Screws 1 and remove Blanking Plate 2 or 2a from the mould backplate.

THREE

Insert tube spanner into the piston. Insert a 3.0mm hex key into the Pin Locking Screw 4 and remove.

FOUR

Re-insert the hex key to adjust pin to correct position.

a. For adjusting a new installation:
 i. The pin length can be set cold by measuring from the front with a depth micrometer calculating the allowance for expansion.
 → Refer to page MVG40-6 for pin expansion calculation.

b. For adjusting an existing installation:
 i. The nozzle to be adjusted will be heated to the minimum melt temperature of the plastic material.
 ii. While pushing the piston forward from the rear adjust the valve pin forward until the piston just begins to move and then back off 1/8 of a turn.
PIN HEIGHT ADJUSTMENT CONT...

FIVE

Insert and tighten Pin Locking Screw 4

SIX

Fit Blanking Plate 2c or 2d and fasten with Blanking Plate Screws 1

SEVEN

Pin adjustment is COMPLETE
Mastip Head Office New Zealand

Physical Address
558 Rosebank Road, Avondale
Auckland 1026, New Zealand

Postal Address
PO Box 90651, Victoria St West
Auckland 1142, New Zealand
Phone: +64 9 970 2100
Email: mastip@mastip.com

Mastip Regional Office Europe
Phone: +33 0 809 400 076
Email: mastip@mastip.eu

Mastip Regional Office North America
Phone: +1 262 644 9400
Email: northamerica@mastip.com

Mastip Regional Office China
Email: china@mastip.com

For a full list of Distributors, please visit www.mastip.com